Đề: Rút gọn biểu thức sau: D= (1+ cosa + cos 2a + cos 3a)/ (cosa + 2 cos ²a - 1)
Chứng minh:
\(a,\frac{cosa}{1+sina}+tana=\frac{1}{cosa}\)
\(b,\frac{1+2sina.cosa}{sin^2a-cos^2a}=\frac{tana+1}{tana-1}\)
c,\(sin^6a+cos^6a=1-3sin^2a.cos^2a\)
d,\(sin^2a-tan^2a=tan^6a\left(cos^2a-cot^2a\right)\)
e.\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a+cot^3a\)
\(\frac{cosa}{1+sina}+\frac{sina}{cosa}=\frac{cos^2a+sina\left(1+sina\right)}{cosa\left(1+sina\right)}=\frac{1+sina}{cosa\left(1+sina\right)}=\frac{1}{cosa}\)
\(\frac{sin^2a+cos^2a+2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina+cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina+cosa}{sina-cosa}=\frac{\frac{sina}{cosa}+1}{\frac{sina}{cosa}-1}=\frac{tana+1}{tana-1}\)
\(\left(sin^2a\right)^3+\left(cos^2a\right)^3=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)
\(=1-3sin^2a.cos^2a\)
\(sin^2a-tan^2a=tan^4a\left(\frac{sin^2a}{tan^4a}-\frac{1}{tan^2a}\right)=tan^4a\left(sin^2a.\frac{cos^2a}{sin^2a}-\frac{1}{tan^2a}\right)\)
\(=tan^4a\left(cos^2a-cot^2a\right)\) bạn ghi sai đề câu này
\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a\left(1+cot^2a\right)-\frac{1}{sina.cosa}+cot^3a\left(1+tan^2a\right)\)
\(=tan^3a+tana-\frac{1}{sina.cosa}+cot^3a+cota\)
\(=tan^3a+cot^3a+\frac{sina}{cosa}+\frac{cosa}{sina}-\frac{1}{sina.cosa}\)
\(=tan^3a+cot^3a+\frac{sin^2a+cos^2a-1}{sina.cosa}=tan^3a+cot^3a\)
Giúp mình với các bạn ơi!!!!!!!!!!!!!!
Cho sina*cosa=0.22. Tính giá trị của biểu thức M=\(\sin^3a+\cos^3a-2.\sin a.\cos a\)
Cho 0<a<90.CM các hệ sau
a)\(\frac{sin^2a-cos^2a+cos^4a}{cos^2a-sin^2a+sin^4a}=tan^4a\)
b)\(\frac{1-4sin^2a.cos^2a}{\left(sina+cosa\right)^2}=\left(sina-cosa\right)^2\)
CM các đẳng thức LG sau:
1)\(\left(cos^4a+sin^4a\right)-2\left(cos^6a+sin^6a\right)=1\)
2) \(\frac{sin^2a+cos^2a}{1+2sina.cosa}=\frac{tana-1}{tana+1}\)
3) \(sin^4a+cos^4a-sin^6a-cos^6a=sin^2a.cos^2a\)
4) \(\frac{cosa}{1+sina}+tana=\frac{1}{cosa}\)
5) \(\frac{tana}{a-tan^2a}.\frac{cot^2a-1}{cota}=1\)
cái câu 1 kia lạ thật, phần phía trc có ngoặc thì phải nhân vs hạng tử nào đó chứ nhỉ? Và mk tính ra kq là \(-\cos^22\alpha\)
\(VT=\cos^4\alpha+\sin^4\alpha-2\cos^6\alpha-2\sin^6\alpha\)
\(=\sin^4\alpha\left(1-2\sin^2\alpha\right)-\cos^4\alpha\left(2\cos^2\alpha-1\right)\)
\(=\sin^4\alpha.\cos2\alpha-\cos^4\alpha.\cos2\alpha\)
\(=\cos2\alpha\left(\sin^2\alpha.\sin^2\alpha-\cos^4\alpha\right)\)
\(=\cos2\alpha.\left[\left(1-\cos^2\alpha\right)^2-\cos^4\alpha\right]\)
\(=\cos2\alpha.\left(1-2\cos^2\alpha\right)\)
\(=-\cos^22\alpha\)
2/ \(VT=\frac{1-\cos^2\alpha+\cos^2\alpha}{1+\sin2\alpha}=\frac{1}{1+\sin2\alpha}\)
\(VP=\frac{\frac{\sin\alpha}{\cos\alpha}-1}{\frac{\sin\alpha}{\cos\alpha}+1}=\frac{\frac{\sin\alpha-\cos\alpha}{\cos\alpha}}{\frac{\sin\alpha+\cos\alpha}{\cos\alpha}}=\frac{\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\)
hmm, câu 2 có vẻ vô lí, bn thử nhân chéo lên mà xem, nó ko ra KQ = nhau đâu
1)
\((\cos^4a+\sin ^4a)-2(\cos^6a+\sin ^6a)=(\cos ^4a+\sin ^4a)-2(\cos ^2a+\sin ^2a)(\cos ^4a-\cos ^2a\sin ^2a+\sin ^4a)\)
\(=(\cos ^4a+\sin ^4a)-2(\cos ^4a-\cos ^2a\sin ^2a+\sin ^4a)\)
\(=-(\cos ^4a-2\sin ^2a\cos ^2a+\sin ^4a)=-(\cos ^2a-\sin ^2a)^2=-\cos ^22a\)
(bạn xem lại đề. Nếu thay $(\cos ^4a+\sin ^4a)$ thành $3(\cos ^4a+\sin ^4a)$ thì kết quả thu được là $(\cos ^2a+\sin ^2a)^2=1$ như yêu cầu)
2) Sửa đề:
\(\frac{\sin ^2a-\cos ^2a}{1+2\sin a\cos a}=\frac{(\sin a-\cos a)(\sin a+\cos a)}{\sin ^2a+\cos ^2a+2\sin a\cos a}=\frac{(\sin a-\cos a)(\sin a+\cos a)}{(\sin a+\cos a)^2}\)
\(=\frac{\sin a-\cos a}{\sin a+\cos a}=\frac{\frac{\sin a}{\cos a}-1}{\frac{\sin a}{\cos a}+1}=\frac{\tan a-1}{\tan a+1}\)
Bạn lưu ý viết đề bài chuẩn hơn.
3)
\(\sin ^4a+\cos ^4a-\sin ^6a-\cos ^6a=\sin ^4a+\cos ^4a-[(\sin ^2a)^3+(\cos ^2a)^3]\)
\(=\sin ^4a+\cos ^4a-(\sin ^2a+\cos ^2a)(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)\)
\(=\sin ^4a+\cos ^4a-(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)\)
\(=\sin ^2a\cos ^2a\) (đpcm)
4)
\(\frac{\cos a}{1+\sin a}+\tan a=\frac{\cos a}{1+\sin a}+\frac{\sin a}{\cos a}=\frac{\cos ^2a+\sin^2a+\sin a}{\cos a(1+\sin a)}=\frac{1+\sin a}{\cos a(1+\sin a)}=\frac{1}{\cos a}\)
5)
\(\frac{\tan a}{1-\tan ^2a}.\frac{\cot ^2a-1}{\cot a}=\frac{\tan a}{(tan a\cot a)^2-\tan ^2a}.\frac{\cot ^2a-1}{\cot a}\)
\(=\frac{\tan a}{\tan ^2a(\cot ^2a-1)}.\frac{\cot ^2a-1}{\cot a}=\frac{1}{\tan a\cot a}=\frac{1}{1}=1\)
-----------------------------------
Mấu chốt của các bài này là bạn sử dụng 2 công thức sau:
1. \(\sin ^2x+\cos^2x=1\)
2. \(\tan x.\cot x=1\)
a. \(\dfrac{sina+sin3a+sin5a}{cosa+cos3a+cos5a}\)= tan3a
b. \(\dfrac{1+cosa}{1-cosa}tan^2\dfrac{a}{2}-cos^2a=sin^2a\)
giúp mk vs ạ
a.
\(\dfrac{sina+sin5a+sin3a}{cosa+cos5a+cos3a}=\dfrac{2sin3a.cosa+sin3a}{2cos3a.cosa+cos3a}=\dfrac{sin3a\left(2cosa+1\right)}{cos3a\left(2cosa+1\right)}=\dfrac{sin3a}{cos3a}=tan3a\)
b.
\(\dfrac{1+cosa}{1-cosa}.\dfrac{sin^2\dfrac{a}{2}}{cos^2\dfrac{a}{1}}-cos^2a=\dfrac{1+cosa}{1-cosa}.\dfrac{\dfrac{1-cosa}{2}}{\dfrac{1+cosa}{2}}-cos^2a\)
\(=\dfrac{1+cosa}{1-cosa}.\dfrac{1-cosa}{1+cosa}-cos^2a=1-cos^2a=sin^2a\)
rút gọn A=\(\frac{sin^3a-cos^3a}{sina-cosa}+sina+cosa\)
\(A=\frac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina.cosa\right)}{sina-cosa}+sina+cosa\)
\(=1+sina.cosa+sina+cosa\)
\(=\left(sina+1\right)\left(cosa+1\right)\)
Bài 1 CM các đẳng thức sau:
a, 1+ sin2a / sina + cosa - 1-tan ²a/2 / 1+ tan ²a/2 = sina
b, cota - tana = 2cot2a
c, 1+ cosa +cos2a + cos3a/ 2cos²a + cosa-1 = 2cosa
d, sin²a / sina- cosa - sina + cosa / tan²a = sina + cosa
e, sin²a - cos²(a-b ) + 2coscosb ×cos(a-b) = cos2a
f, cos²a - 2sina × ( 1-sina ) × cosa +( 1 + sina) × cosa - 2×(1+sina ) / 1- sina = cosa
Bài 2 CM các đẳng thức sau ko phụ thuộc vào x
a, A= sin⁶x + cos⁶x - 1 / sin⁴x + cos ⁴x -1
b, B = ( 2sin ⁶x - 3sin ⁴x - 4sin²x ) +( 2cos⁶x - 3 cos⁴x- 4cos⁴x
c, C= sin⁴x + 3cos⁴x -1 / sin⁶x + cos⁶x + 3cos⁴x-1
Giải giúp tớ 2 bài này vs tớ cảm ơn nhìu
Chứng minh các công thức sau:
a) tana=\(\frac{sina}{cosa}\) b)cot ga=\(\frac{cosa}{sina}\) c)tana.cot ga=1
d) \(^{sin^2a+cos^2a=1}\)
e) \(1+tan^2a=\frac{1}{cos^2a}\)
f)\(1+cotg^2a=\frac{1}{sin^2a}\)
Xét ΔBAC vuông tại B có a = ^A ta có :
a) \(\frac{\sin\alpha}{\cos\alpha}=\frac{\sin A}{\cos A}=\frac{\frac{BC}{AB}}{\frac{AB}{AC}}=\frac{BC}{AB}\cdot\frac{AC}{AB}=\frac{BC}{AB}=\tan A=\tan\alpha\left(đpcm\right)\)
b) \(\frac{\cos\alpha}{\sin\alpha}=\frac{\cos A}{\sin A}=\frac{\frac{AB}{AC}}{\frac{BC}{AC}}=\frac{AB}{AC}\cdot\frac{AC}{BC}=\frac{AB}{BC}=\cot A=\cot\alpha\left(đpcm\right)\)
c) \(\tan\alpha\cdot\cot\alpha=\tan A\cdot\cot A=\frac{BC}{AB}\cdot\frac{AB}{BC}=1\left(đpcm\right)\)
d) \(\sin^2\alpha+\cos^2\alpha=\sin^2A+\cos^2A=\frac{BC^2}{AC^2}+\frac{AB^2}{AC^2}=\frac{AB^2+BC^2}{AC^2}=1\left(đpcm\right)\)
e) \(\frac{1}{\cos^2\alpha}=\frac{1}{\cos^2A}=\frac{1}{\frac{AB^2}{AC^2}}=\frac{AC^2}{AB^2};1+\tan^2\alpha=1+\tan^2A=1+\frac{BC^2}{AB^2}=\frac{AB^2+BC^2}{AB^2}=\frac{AC^2}{AB^2}\)
\(\Rightarrow1+\tan^2\alpha=\frac{1}{\cos^2\alpha}\left(đpcm\right)\)
f) \(\frac{1}{\sin^2\alpha}=\frac{1}{\sin^2A}=\frac{1}{\frac{BC^2}{AC^2}}=\frac{AC^2}{BC^2};1+\cot^2\alpha=1+\cot^2A=1+\frac{AB^2}{BC^2}=\frac{BC^2+AB^2}{BC^2}=\frac{AC^2}{BC^2}\)
\(\Rightarrow1+\cot^2\alpha=\frac{1}{\sin^2\alpha}\left(đpcm\right)\)
cho cosa =3/4.Tinh A= cos(3a/2)cos(a/2)
cos(\(\dfrac{3a}{2}\))*cos(\(\dfrac{a}{2}\))=\(\dfrac{1}{2}\left(cos\left(\dfrac{3a}{2}+\dfrac{a}{2}\right)+cos\left(\dfrac{3a}{2}-\dfrac{a}{2}\right)\right)\)=\(\dfrac{1}{2}\left(cos\left(2a\right)+cos\left(a\right)\right)\)=\(\dfrac{1}{2}\left(2cos^2a-1+cosa\right)\)=\(\dfrac{1}{2}\left(2\cdot\left(\dfrac{3}{4}\right)^2-1+\dfrac{3}{4}\right)=\dfrac{7}{16}\)