Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Nguyễn Đức Huy
Xem chi tiết
Nguyễn Thị Thùy Giang
30 tháng 12 2015 lúc 17:05

Đặt a/b=b/3c=c/9a=k

Ta có: a/b=b/3c=c/9a

=>(a/b)3=(b/3c)3=(c/9a)3=(a.b.c)/(b.3c.9c)=1/27=k3

=>k= (1/3)

Ta có: b/3c=1/3

=>b=c (đpcm)

Bùi Nguyễn Đức Huy
Xem chi tiết
Nguyễn Nhật Minh
25 tháng 12 2015 lúc 10:12

\(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}=k\Leftrightarrow\left(\frac{a}{b}\right)^3=\frac{a.b.c}{b.3c.9a}=\frac{1}{27}=k^3\Leftrightarrow k=\frac{1}{3}\)

\(\frac{b}{3c}=\frac{1}{3}\Leftrightarrow b=c\)

 

Nguyễn Hưng Phát
Xem chi tiết
My Good Friends
Xem chi tiết
Minh Hoàng Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 9 2020 lúc 17:38

Sửa đề: Cho ba số thực a,b,c dương

Áp dụng BĐT Cauchy Schwarz, ta được:

\(VT=\left(a+b+c\right)\left(\frac{9}{bc}+\frac{25}{c+a}+\frac{64}{a+b}\right)-98\ge\left(a+b+c\right)\left(\frac{256}{2\left(a+b+c\right)}\right)-98=30\)

\(\Leftrightarrow VT\ge30\)

Dấu '=' xảy ra khi \(\frac{8}{a+b}=\frac{5}{c+a}=\frac{3}{b+c}\)

\(\Leftrightarrow\frac{8}{a+b}=\frac{8}{a+b+2c}\)

hay c=0(vô lý)

=> Dấu bằng không xảy ra

=>ĐPCM

Khách vãng lai đã xóa
SAKURA Thủ lĩnh thẻ bài
Xem chi tiết
Akai Haruma
30 tháng 6 2019 lúc 22:57

Lời giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\)

Khi đó:

a) Đề bài sai. Bạn xem lại đề.

b) Cần thêm điều kiện $a\neq \pm b; c\neq \pm d$

Khi đó \(t=\frac{a}{b}=\frac{c}{d}\neq \pm 1\)

\(\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}\)

\(\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}\)

\(\Rightarrow \frac{a+b}{c+d}=\frac{a-b}{c-d}\) (đpcm)

Nguyễn Minh Hoàng
Xem chi tiết
Nguyễn Minh Đăng
20 tháng 1 2021 lúc 20:59

Đặt \(\hept{\begin{cases}b+c=x>0\\c+a=y>0\\a+b=z>0\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{y+z-x}{2}\\b=\frac{z+x-y}{2}\\x=\frac{x+y-z}{2}\end{cases}}\)

Bất đẳng thức cần chứng minh tương đương:

\(\frac{9\left(y+z-x\right)}{2x}+\frac{25\left(z+x-y\right)}{2y}+\frac{64\left(x+y-z\right)}{2z}>30\)

Ta có: \(VP=\frac{9y}{2x}+\frac{9z}{2x}-\frac{9}{2}+\frac{25z}{2y}+\frac{25x}{2y}-\frac{9}{2}+\frac{32x}{z}+\frac{32y}{z}-32\)

\(=\left(\frac{9y}{2x}+\frac{25x}{2y}\right)+\left(\frac{9z}{2x}+\frac{32x}{z}\right)+\left(\frac{25z}{2y}+\frac{32y}{z}\right)-41\)

\(\ge2\cdot\frac{15}{2}+2\cdot12+2\cdot20-41=38>30\)

\(\Rightarrow\frac{9a}{b+c}+\frac{25b}{c+a}+\frac{64c}{a+b}>30\)

Khách vãng lai đã xóa
Tạ Tiểu Mi
Xem chi tiết
Phước Lộc
13 tháng 12 2017 lúc 7:09

Đặt \(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}=k\)

Ta có: \(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}\)

\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{3c}\right)^3=\left(\frac{c}{9a}\right)^3=\frac{a.b.c}{b.3c.9a}=\frac{1}{27}=k^3\)

\(\Rightarrow k=\frac{1}{3}\)

Ta có: \(\frac{b}{3c}=\frac{1}{3}\)

\(\Rightarrow b=\frac{1}{3}.3c=c\)

Vậy \(b=c\left(đpcm\right)\)

okazaki * Nightcore - Cứ...
3 tháng 10 2019 lúc 20:16

đáp số 

a=b

hok tốt

le vi dai
Xem chi tiết
Nguyệt Nguyệt
14 tháng 3 2017 lúc 17:39

Áp dụng BĐT Cauchy cho 2 số dương ta được :

\(\dfrac{a^2}{b+3c}+\dfrac{b+3c}{16}\ge2\sqrt{\dfrac{a^2}{b+3c}\times\dfrac{b+3c}{16}}=\dfrac{2a}{4}\)

Suy ra \(\dfrac{a^2}{b+3c}\ge\dfrac{2a}{4}-\dfrac{b+3c}{16}\)

Cmtt ta cũng được :

\(\dfrac{b^2}{c+3a}\ge\dfrac{2b}{4}-\dfrac{c+3a}{16}\) \(\dfrac{c^2}{a+3b}\ge\dfrac{2c}{4}-\dfrac{a+3b}{16}\)

Khi đó :

\(\dfrac{a^2}{b+3c}+\dfrac{b^2}{c+3a}+\dfrac{c^2}{a+3b}\ge\dfrac{2a}{4}-\dfrac{b+3c}{16}+\dfrac{2b}{4}-\dfrac{c+3a}{16}+\dfrac{2c}{4}-\dfrac{a+3b}{16}\)

\(\dfrac{2a}{4}-\dfrac{b+3c}{16}+\dfrac{2b}{4}-\dfrac{c+3a}{16}+\dfrac{2c}{4}-\dfrac{a+3b}{16}=\dfrac{a+b+c}{4}\)

Vậy \(\dfrac{a^2}{b+3c}+\dfrac{b^2}{c+3a}+\dfrac{c^2}{a+3b}\ge\dfrac{a+b+c}{4}\)

Kuro Kazuya
7 tháng 5 2017 lúc 4:31

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{a^2}{b+3c}+\dfrac{b^2}{c+3a}+\dfrac{c^2}{a+3b}\ge\dfrac{\left(a+b+c\right)^2}{4\left(a+b+c\right)}=\dfrac{a+b+c}{4}\) (đpcm)

Dấu " = " xảy ra khi \(a=b=c\)