Nếu a x 2 + b x 1 = c x 2 + a x 1 và c x 3 + a x 1 = b x 2 + a x 1 thì c x 2 + a x 2 = b x ?
a.
f(x) + g(x)
= x^2 + 5x + 5 + x^2 - 4x + 3
= 2x^2 + x + 8
b.
Thay x = 1 vào f(x), ta có:
1^2 + 5 . 1 + 5
= 1 + 5 + 5
= 11
Vậy x = 1 không là nghiệm của f(x)
Thay x = 1 vào g(x), ta có:
1^2 - 4 . 1 + 3
= 1 - 4 + 3
= 0
Vậy x = 1 là nghiệm của g(x)
c.
f(x) = g(x)
x^2 + 5x + 5 = x^2 - 4x + 3
x^2 + 5x - x^2 + 4x = 3 - 5
9x = - 2
x = - 2/9
Câu 4. Tìm giá trị của x sao cho các biểu thức A và B sau đây có giá trị bằng nhau
a, A=(x-3) (x+4)-2(3x-2) và B=(x-4)2
b, A=(x+2) (x-2)+3x2 và B=(2x+1)2+2x
c, A=(x-1) (x2+x+1)-2x và B=x(x-1) (x+1)
d, A=(x+1)3-(x-2)3 và B=(3x-1) (3x+1)
Lời giải:
a)
$A=B\Leftrightarrow (x-3)(x+4)-2(3x-2)=(x-4)^2$
$\Leftrightarrow x^2+x-12-6x+4=x^2-8x+16$
$\Leftrightarrow 3x=24\Leftrightarrow x=8$
b)
$A=B\Leftrightarrow (x+2)(x-2)+3x^2=(2x+1)^2+2x$
$\Leftrightarrow x^2-4+3x=4x^2+6x+1$
$\Leftrightarrow 3x^2+3x+5=0$
$\Leftrightarrow 3(x+\frac{1}{2})^2=\frac{-17}{4}< 0$ (vô lý)
Do đó k có giá trị nào của $x$ để $A=B$
c)
$A=B\Leftrightarrow (x-1)(x^2+x+1)-2x=x(x-1)(x+1)$
$\Leftrightarrow x^3-1-2x=x(x^2-1)=x^3-x$
$\Leftrightarrow x=-1$
d)
$A=B\Leftrightarrow (x+1)^3-(x-2)^3=(3x-1)(3x+1)$
$\Leftrightarrow [(x+1)-(x-2)][(x+1)^2+(x+1)(x-2)+(x-2)^2]=9x^2-1$
$\Leftrightarrow 3(x^2+2x+1+x^2-x-2+x^2-4x+4)=9x^2-1$
$\Leftrightarrow 3(3x^2-3x+3)=9x^2-1$
$\Leftrightarrow -9x=-10\Leftrightarrow x=\frac{10}{9}$
$(x+1)^3-(x-2)^3=(3x-1)(3x+1)$
Xét đa thức f(x)=ax^2+bx+c. CMR nếu f(x) có 3 nghiệm khác nhau x1,x2,x3 thì a=b=c=0
cho đa thức f(x)= ax^2+bx+c. chứng minh rằng nếu x=1 và x= -1 là nghiệm của đa thức f(x) thì a và c là hai số đối nhau
CẦN GẤP!!!
CHo đa thức bậc 2: A(x)= ax^2 + bx+c. Chứng tỏ nếu x=1 là 1 nghiệm của đa thức thì a+b+c =0 ?
Cho đa thức f(x)=ax²+bx+c
A, biết f(0)=0, f(1)=2013 và f(-1)=2012. Tính a b c
B, Chứng minh rằng nếu f(1)=2012; f(-2)=f(-3)=2036 thì đa thức f(x) vô nghiệm
Giải bài toán
1. Tìm x, biết: 1/1 nhân 2 + 1/2 nhân 3+ 1/3 nhân 4 + ..........+ 1/x nhân (x+1) =29/30
2. Tìm a,b thỏa: 3a= 4b và b-a= -10
3. Cho tỉ lệ thức : a/b = c/d. CMR : (a+c)2/(a-c)2 = (b+d)2/(b-d)2
4. CMR: nếu a, b là 2 số nguyên tố lớn hơn 3 thì a2 - b2 chia hết cho 24
Nguyễn Ngô Gia Hân:
1.Tìm x
\(^{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}+\frac{1}{\left(x+1\right)}=\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{1}+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{x}-\frac{1}{x}\right)-\frac{1}{x+1}=\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{1}+0+0+0+...+0-\frac{1}{x+1}=\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{1}-\frac{1}{x+1}=\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{x+1}=\frac{1}{1}-\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{x+1}=\frac{1}{30}}\)
\(^{\Leftrightarrow x+1=30}\)
\(^{\Leftrightarrow x=29}\)
Vậy x =29
Làm đc mỗi bài này thoi, tham khảo nha ~~
Bài 1 có rồi mk làm mấy bài sau nhé
Bài 2 :
Ta có :
\(3a=4b\)\(\Rightarrow\)\(\frac{b}{3}=\frac{a}{4}\) và \(b-a=-10\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{b}{3}=\frac{a}{4}=\frac{b-a}{3-4}=\frac{-10}{-1}=10\)
Do đó :
\(\frac{a}{4}=10\)\(\Rightarrow\)\(a=10.4=40\)
\(\frac{b}{3}=10\)\(\Rightarrow\)\(b=10.3=30\)
Vậy \(a=40\) và \(b=30\)
Chúc bạn học tốt ~
bài 1 ; bài 2 có roài làm bài 4 nhaa
a;b là 2 số nguyên tố lớn hơn 3 \(\Rightarrow a;b\inℕ\)và a;b chỉ chia hết cho 1 và chính nó
ta tách số 24 thành các số nguyên tố
\(24=2^3.3\)
=> \(a^2-b^2⋮2;3\)
=> \(a^2-b^2\in BC\left(2;3\right)\)
\(BCNN\left(2;3\right)=6\)
=>\(a^2-b^2\in B\left(6\right)=\left\{1;6;12;18;24;30;36;42;...\right\}\)
các số có thể đổi về dạng mũ 2 là :\(36\)
=>\(a^2-b^2=36\)
\(a^2-b^2=6^2\)
\(a-b=6\)
mà \(6⋮2;3\)
=> \(a^2-b^2⋮24\)
Câu 4. Tìm giá trị của x sao cho các biểu thức A và B sau đây có giá trị bằng nhau
a, A=(x-3) (x+4)-2(3x-2) và B=(x-4)2
b, A=(x+2) (x-2)+3x2 và B=(2x+1)2+2x
c, A=(x-1) (x2+x+1)-2x và B=x(x-1) (x+1)
d, A=(x+1)3-(x-2)3 và B=(3x-1) (3x+1)
Câu 5. Giải các phương trình sau
a, \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\); b, \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
c, \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
Bài 5 :
a, Ta có : \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
=> \(\frac{3\left(2x+1\right)^2}{15}-\frac{5\left(x-1\right)^2}{15}=\frac{7x^2-14x-5}{15}\)
=> \(3\left(2x+1\right)^2-5\left(x-1\right)^2=7x^2-14x-5\)
=> \(12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)
=> \(36x+3=0\)
=> \(x=-\frac{1}{12}\)
Vậy phương trình trên có nghiệm là \(S=\left\{-\frac{1}{12}\right\}\)
b, Ta có : \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
=> \(\frac{5\left(7x-1\right)}{30}+\frac{60x}{30}=\frac{6\left(16-x\right)}{30}\)
=> \(5\left(7x-1\right)+60x=6\left(16-x\right)\)
=> \(35x-5+60x-96+6x=0\)
=> \(101x-101=0\)
=> \(x=1\)
Vậy phương trình trên có tạp nghiệm là \(S=\left\{1\right\}\)
c, Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
=> \(\frac{8\left(x-2\right)^2}{24}-\frac{3\left(2x-3\right)\left(2x+3\right)}{24}+\frac{4\left(x-4\right)^2}{24}=0\)
=> \(8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x-4\right)^2=0\)
=> \(8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2-8x+16\right)=0\)
=> \(8x^2-32x+32-12x^2+27+4x^2-32x+64=0\)
=> \(-64x+123=0\)
=> \(x=\frac{123}{64}\)
Vậy phương trình có nghiệm là \(S=\left\{\frac{123}{64}\right\}\)
a) Cho đa thức A(x)= 2x^2+bx+c
Tìm b và c, biết A(0)= 3 và A(-1)= 0
b) Tính giá trị của đa thức B(x)= 1+x+x^2+x^3+...+x^10 tại x=-1
A(x)=\(2x^2+bx+c\)
A(0)=2.0+b.0+c=c mà A(0)=3
A(-1)=2(-1)^2+(-1)b+c=2-b+c mà A(-1)=0
c-2+b-c=3-0=3<=>b-2=3<=>b=5
=>2-5+c=0=>c=3
b, \(1+x+x^2+x^3+...+x^{10}\)
thay x=-1 taddc \(1+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{10}=2\)
vậy tại x=-1 ,B=2