Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ytr
Xem chi tiết
Không Một Ai
5 tháng 9 2019 lúc 18:35

Bài 1.

a) x2 + 7x +12 = 0

Ta có Δ = 72 - 4.12 = 1> 0 => \(\sqrt{\Delta}=\sqrt{1}=1\)

Phương trình có 2 nghiệm phân biệt:

x1 = \(\frac{-7+1}{2}=-3\)

x2= \(\frac{-7-1}{2}=-4\)

Không Một Ai
5 tháng 9 2019 lúc 18:47

Bài 1

b) 2x2 + 5x - 3=0

Ta có: Δ = 52 + 4.2.3 = 49 > 0 => \(\sqrt{\Delta}=\sqrt{49}=7\)

Phương tình có 2 nghiệm phân biệt:

x1 = \(\frac{-5+7}{2.2}=\frac{1}{2}\)

x2 = \(\frac{-5-7}{2.2}-3\)

c) 3x2 +10x+7 = 0

Ta có: Δ = 102 - 4.3.7= 16> 0 => \(\sqrt{\Delta}=\sqrt{16}=4\)

Phương tình có 2 nghiệm phân biệt:

x1= \(\frac{-10+4}{2.3}=-1\)

x2= \(\frac{-10-4}{2.3}=-\frac{7}{3}\)

Không Một Ai
5 tháng 9 2019 lúc 18:56

Bài 1

d)x4+5x2-36=0

Đặt x2 = t ( đk: t ≥0)

=> t2 +5t - 36 =0

Ta có: Δ = 52 + 4.36 = 169 > 0 => \(\sqrt{\Delta}=\sqrt{169}=13\)

Phương tình có 2 nghiệm phân biệt:

t1 = \(\frac{-5-13}{2}=-9\) (loại)

t2 = \(\frac{-5+13}{2}=4\) (thỏa mãn)

Với t = 4 ta có:

x2 = 4

\(\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Nguyễn Thị Ánh Ngọc
Xem chi tiết
Kuroba Kaito
9 tháng 1 2019 lúc 15:07

a) (x - 2)(x + 1) = 0

=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

Vậy...

Kuroba Kaito
9 tháng 1 2019 lúc 15:14

e) xy - 5x - 5y = 0

=> x(y - 5) - 5y = 0

=> x(y - 5) - 5(y - 5) - 25 = 0

=>(x - 5)(y - 5) = 25 = 1 . 25 = (-1) . (-25) = 5 . 5 = (-5). (-5)       (và ngược lại)

Lập bảng :

x - 5125-1-255-5
y - 5251-25-15-5
x6304-20100
y306-204 100

Vậy ...
 

Xem chi tiết
Trần Huỳnh Khả My
Xem chi tiết
Trần Minh Anh
Xem chi tiết
Đỗ Bích Ngọc
Xem chi tiết
Vũ Minh	Huy
Xem chi tiết
Nguyễn Ngọc Anh Minh
23 tháng 11 2023 lúc 15:23

\(\Leftrightarrow x\left(y+5\right)=5y+36\)

\(\Leftrightarrow x=\dfrac{5y+36}{y+5}=\dfrac{5\left(y+5\right)+11}{y+5}=5+\dfrac{11}{y+5}\left(y\ne-5\right)\) (1)

x nguyên khi \(11⋮\left(y+5\right)\)

\(\Rightarrow\left(y+5\right)=\left\{-11;-1;1;11\right\}\)

\(\Rightarrow y=\left\{-16;-6;-4;6\right\}\) Lần lượt thay các giá trị của y vào (1) để tìm các giá trị tương ứng của x

Ngô Hiếu
Xem chi tiết
Akai Haruma
9 tháng 9 2021 lúc 22:39

Lời giải:
a.

$A=20x^3-10x^2+5x-(20x^3-10x^2-4x)$

$=9x=9.15=135$

b.

$B=(5x^2-20xy)-(4y^2-20xy)=5x^2-4y^2$

$=5(\frac{-1}{5})^2-4(\frac{-1}{2})^2=\frac{-4}{5}$

c.

$C=(6x^2y^2-6xy^3)-(8x^3-8x^2y^2)-(5x^2y^2-5xy^3)$

$=-8x^3+9x^2y^2-xy^3$

$=(-2x)^3+(3xy)^2-xy^3$

$=(-2.\frac{1}{2})^3+(3.\frac{1}{2}.2)^2-\frac{1}{2}.2^3$
$=(-1)^3+3^2-4=4$

Nguyễn Bảo Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 6 2022 lúc 23:40

Bài 4: 

a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)

\(\Leftrightarrow3x-40=2\)

=>3x=42

hay x=14

b: \(\Leftrightarrow x^3+8-x^3-2x=0\)

=>-2x+8=0

=>-2x=-8

hay x=4

c: \(x\left(x-2\right)+\left(x-2\right)=0\)

=>(x-2)(x+1)=0

=>x=2 hoặc x=-1

d: \(5x\left(x-3\right)-x+3=0\)

=>5x(x-3)-(x-3)=0

=>(x-3)(5x-1)=0

=>x=3 hoặc x=1/5

e: \(3x\left(x-5\right)-\left(x-1\right)\left(3x+2\right)=30\)

\(\Leftrightarrow3x^2-15x-3x^2-2x+3x+2=30\)

=>-14x=28

hay x=-2

f: \(\Leftrightarrow\left(x+2\right)\left(x+30-x-5\right)=0\)

=>x+2=0

hay x=-2