tìm x, biết : \(3\sqrt{x}>\sqrt{10}\)
bài 1: tìm x, biết:
\(\sqrt{8x}-\sqrt{200x}+5\sqrt{x}=-20\)
\(3\sqrt{5x}-\sqrt{75x}+4\sqrt{x}=10\)
Lời giải:
a. ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+5\sqrt{x}=-20$
$\Leftrightarrow 5\sqrt{x}-8\sqrt{2x}=-20$
$\Leftrightarrow \sqrt{x}(5-8\sqrt{2})=-20$
$\Leftrightarrow \sqrt{x}=\frac{20}{8\sqrt{2}-5}$
$\Rightarrow x=(\frac{20}{8\sqrt{2}-5})^2$
b. ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 3\sqrt{5x}-5\sqrt{3x}+4\sqrt{x}=10$
$\Leftrightarrow \sqrt{x}(3\sqrt{5}-5\sqrt{3}+4)=10$
$\Leftrightarrow \sqrt{x}=\frac{10}{3\sqrt{5}-5\sqrt{3}+4}$
$\Rightarrow x=(\frac{10}{3\sqrt{5}-5\sqrt{3}+4})^2$
Tìm x ≥ 0, biết:
a) 2x-7\(\sqrt{x}\)+3=0
b) 3\(\sqrt{x}\)+5 < 6
c) x-3\(\sqrt{x}\) -10 < 0
d) x- 5\(\sqrt{x}\) +6 = 0
e) x+ 5\(\sqrt{x}\) -14 < 0
\(\left(a\right):2x-7\sqrt{x}+3=0\left(x\ge0\right)\\ < =>\left(2x-6\sqrt{x}\right)-\left(\sqrt{x}-3\right)=0\\ < =>2\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}-3\right)=0\\ < =>\left(2\sqrt{x}-1\right)\left(\sqrt{x}-3\right)=0\\ =>\left[{}\begin{matrix}2\sqrt{x}-1=0\\\sqrt{x}-3=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{4}\left(TM\right)\\x=9\left(TM\right)\end{matrix}\right.\)
\(\left(b\right):3\sqrt{x}+5< 6\\ < =>3\sqrt{x}< 1\\ < =>\sqrt{x}< \dfrac{1}{3}\\ < =>0\le x< \dfrac{1}{9}\)
\(\left(c\right):x-3\sqrt{x}-10< 0\\ < =>\left(x-5\sqrt{x}\right)+\left(2\sqrt{x}-10\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}-5\right)+2\left(\sqrt{x}-5\right)< 0\\ < =>\left(\sqrt{x}-5\right)\left(\sqrt{x}+2\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}-5< 0\\\sqrt{x}+2>0\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}0\le x< 25\\x\ge0\end{matrix}\right.< =>0\le x< 25\)
\(\left(d\right):x-5\sqrt{x}+6=0\left(x\ge0\right)\\ < =>\left(x-2\sqrt{x}\right)-\left(3\sqrt{x}-6\right)=0\\ < =>\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\\ < =>\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\\ =>\left[{}\begin{matrix}\sqrt{x}-3=0\\\sqrt{x}-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=9\\x=4\end{matrix}\right.\left(TM\right)\)
\(\left(e\right):x+5\sqrt{x}-14< 0\\ < =>\left(x+7\sqrt{x}\right)-\left(2\sqrt{x}+14\right)< 0\\ < =>\sqrt{x}\left(\sqrt{x}+7\right)-2\left(\sqrt{x}+7\right)< 0\\ < =>\left(\sqrt{x}-2\right)\left(\sqrt{x}+7\right)< 0\\ =>\left\{{}\begin{matrix}\sqrt{x}+7>0\\\sqrt{x}-2< 0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.< =>0\le x< 4\)
tìm x biết
a, \(\sqrt{(x+3)^2}\)=12
b, \(\sqrt{25x-25}-\sqrt{9x-9}\)=10
a: ĐKXĐ: \(x\in R\)
\(\sqrt{\left(x+3\right)^2}=12\)
=>\(\left|x+3\right|=12\)
=>\(\left[{}\begin{matrix}x+3=12\\x+3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-15\end{matrix}\right.\)
b: ĐKXĐ: x>=1
\(\sqrt{25x-25}-\sqrt{9x-9}=10\)
=>\(5\sqrt{x-1}-3\sqrt{x-1}=10\)
=>\(2\sqrt{x-1}=10\)
=>x-1=25
=>x=26(nhận)
Mọi người ơi giúp mk vs ạ mk đag cần gấp!
câu 1 Tìm x biết
a)\(\sqrt{2\text{x}-1}=\sqrt{5}\)
b)\(\sqrt{x-10}=-2\)
c)\(\sqrt{\left(x-5\right)}=3\)
a) \(\sqrt{2x-1}=\sqrt{5}\) (ĐK: \(x\ge\dfrac{1}{2}\))
\(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\left(tm\right)\)
b) \(\sqrt{x-10}=-2\)
⇒ Giá trị của biểu thức trong căn luôn dương nên phương trình vô nghiệm
c) \(\sqrt{\left(x-5\right)^2}=3\)
\(\Leftrightarrow\left|x-5\right|=3\)
TH1: \(\left|x-5\right|=x-5\) với \(x-5\ge0\Leftrightarrow x\ge5\)
Pt trở thành:
\(x-5=3\) (ĐK: \(x\ge5\))
\(\Leftrightarrow x=3+5\)
\(\Leftrightarrow x=8\left(tm\right)\)
TH2: \(\left|x-5\right|=-\left(x-5\right)\) với \(x-5< 0\Leftrightarrow x< 0\)
Pt trở thành:
\(-\left(x-5\right)=3\) (ĐK: \(x< 5\))
\(\Leftrightarrow-x+5=3\)
\(\Leftrightarrow-x=-2\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy: \(S=\left\{2;8\right\}\)
a/ ĐKXĐ: 2x - 1 >= 0 <=> 2x > 1 <=> x>= 1/2
\(\sqrt{2x-1}=\sqrt{5}\Leftrightarrow2x-1=5\Leftrightarrow2x=6\Leftrightarrow x=3\left(tm\right)\)
b/ ĐKXĐ: x - 10 >= 0 <=> x >= 10
Biểu thức trong căn luôn nhận giá trị dương => vô nghiệm
c/ ĐKXĐ: x - 5 >=0 <=> x >= 5
\(\sqrt{x-5}=3\Leftrightarrow x-5=9\Leftrightarrow x=14\left(tm\right)\)
Cho \(A=\frac{x-1}{\sqrt{x}-3},B=\frac{10\sqrt{x}+12}{x-9}+\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{1}{3-\sqrt{x}}\left(x\ge0,x\ne9\right)\)
a. Rút gọn B
b. Biết C = A : B. Tìm minC
\(a,B=\frac{10\sqrt{x}+12+\sqrt{x}\left(\sqrt{x}-3\right)-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x+6\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(b,C=\frac{x-1}{\sqrt{x}-3}:\frac{\sqrt{x}+3}{\sqrt{x}-3}=\frac{x-1}{\sqrt{x}+3}\)
Vì\(\hept{\begin{cases}x\ge0\\\sqrt{x}+3>0\end{cases}\Rightarrow}x-1\ge-1\)
\(\Rightarrow C_{min}=-1\Leftrightarrow x=0\)
Vậy................
Với x = 0 thì C = -1/3 chứ có phải là -1 đâu .
b)
Ta có: \(C=\frac{x-1}{\sqrt{x}+3}=\sqrt{x}-3+\frac{8}{\sqrt{x}+3}=\left(\sqrt{x}+3+\frac{9}{\sqrt{x}+3}\right)-6-\frac{1}{\sqrt{x}+3}\)
\(\ge2\sqrt{\left(\sqrt{x}+3\right).\frac{9}{\sqrt{x}+3}}-6-\frac{1}{3}=-\frac{1}{3}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\sqrt{x}+3=\frac{9}{\sqrt{x}+3}\\x=0\end{cases}}\Leftrightarrow x=0\)
Vậy min C = -1/3 tại x =0
Bài 3.Tìm x để \(\sqrt{ }\) có nghĩa
a)\(\sqrt{\dfrac{3}{x+7}}\)
b)\(\sqrt{\dfrac{-2}{5-x}}\)
c)\(\sqrt{x^2-7x+10}\)
d)\(\sqrt{x^2-8x+10}\)
e)\(\sqrt{9x^2+1}\)
Tìm x để căn có nghĩa ak mn giúp e với ak
\(a,ĐK:\dfrac{3}{x+7}\ge0\Leftrightarrow x+7>0\left(3>0;x+7\ne0\right)\Leftrightarrow x>-7\\ b,ĐK:\dfrac{-2}{5-x}\ge0\Leftrightarrow5-x< 0\left(2-< 0;5-x\ne0\right)\Leftrightarrow x>5\\ c,ĐK:x^2-7x+10\ge0\Leftrightarrow\left(x-5\right)\left(x-2\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-5\ge0\\x-2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-5\le0\\x-2\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge5\\x\le2\end{matrix}\right.\)
\(d,ĐK:x^2-8x+10\ge0\Leftrightarrow\left(x-4-\sqrt{6}\right)\left(x-4+\sqrt{6}\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-4-\sqrt{6}\ge0\\x-4+\sqrt{6}\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-4-\sqrt{6}\le0\\x-4+\sqrt{6}\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge4+\sqrt{6}\\x\ge4-\sqrt{6}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\)
\(e,ĐK:9x^2+1\ge0\Leftrightarrow x\in R\left(9x^2+1\ge1>0\right)\)
a) \(ĐK:x+7>0\Leftrightarrow x>-7\)
b) \(ĐK:5-x< 0\Leftrightarrow x>5\)
c) \(ĐK:x^2-7x+10\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x-5\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge5\\x\le2\end{matrix}\right.\)
d) \(ĐK:x^2-8x+10\ge0\)
\(\Leftrightarrow\left(x-4-\sqrt{6}\right)\left(x-4+\sqrt{6}\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge4+\sqrt{6}\\x\le4-\sqrt{6}\end{matrix}\right.\)
e) Do \(9x^2+1\ge1>0\)
Nên biểu thức được xác định với mọi x
Tìm x biết: \(\sqrt{\left(5-2\sqrt{6}\right)^2}+\sqrt{\left(5+2\sqrt{6}\right)^x}=10\)
Ta có: \(\sqrt{\left(5-2\sqrt{6}\right)^2}+\sqrt{\left(5+2\sqrt{6}\right)^x}=10\)
\(\Leftrightarrow\sqrt{\left(5+2\sqrt{6}\right)^x}=10-5+2\sqrt{6}=5+2\sqrt{6}\)
\(\Leftrightarrow\left(5+2\sqrt{6}\right)^x=\left(5+2\sqrt{6}\right)^2\)
hay x=2
cho biểu thức: A=\(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}-\frac{9\sqrt{x}-10}{x-4}\)( x >= 0; x khác 4)
a, Rút gọn A
b, Tìm A biết x = 4 - \(2\sqrt{3}\)
c, Tìm x thuộc Z để A thuộc Z
\(a,đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}-\frac{9\sqrt{x}-10}{x-4}.\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)\(-\frac{9\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}+3\sqrt{x}-6-9\sqrt{x}+10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)
\(b,x=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow x=\sqrt{3}-1\)
\(\Rightarrow A=\frac{\sqrt{3}-1-2}{\sqrt{3}-1+2}=\frac{\sqrt{3}-3}{\sqrt{3}-1}\)
\(b,A=\frac{\sqrt{x}-2}{\sqrt{x}+2}=\frac{\sqrt{x}+2-4}{\sqrt{x}+2}\)\(=1-\frac{4}{\sqrt{x}+2}\)
\(A\in Z\Leftrightarrow1-\frac{4}{\sqrt{x}+2}\in Z\Rightarrow\frac{4}{\sqrt{x}+2}\in Z\)
\(\Rightarrow\sqrt{x}+2\inƯ_4\)
Mà \(Ư_4=\left\{\pm1;\pm2;\pm4\right\}\)Nhưng \(\sqrt{x}+2\ge2\)\(\Rightarrow\sqrt{x}+2\in\left\{2;4\right\}\)
\(Th1:\sqrt{x}+2=2\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
\(Th2:\sqrt{x}+2=4\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(KL:x\in\left\{0;4\right\}\)
Cho B=\(\dfrac{x+16}{\sqrt{x}+3}\)
a) Tìm x để \(B.\left(\sqrt{x}+3\right)=10\sqrt{x}\)
c) Tìm GTNN của B