cho x+y=xy.CMR x=y
cho tam giác ABC vuông tại A có AB=AC.Qua A vẽ đường thẳng xy sao cho B và C nằm cùng phía với x,y.Kẻ BD và CE vuông góc với xy.CMR:
a) tam giác BAD = tam giác CAE
b) DE = BD + CE
a) CHỨNG MINH RẰNG TAM GIÁC ADB = TAM GIÁC CEA
*Ta có: A1+A2+A3=180
A1+A3 = 180-90=90
mà A1+B1=90 (tam giác DAB vuông tại D)
=> A3=B1
* Xét tam giác ADB và CEA
D=E=90 (BD vuông xy; CE vuông xy)
cạnh huyền AB=AC (gt) A3=B1 (cmt)
Vậy tam giác ADB=CEA (cạnh huyền_ góc nhọn)
b) CHỨNG MINH RẰNG DE-DB+EC
*Vì tam giác ADB=CEA (cmt)
=> DB=EA và CE=AD (yếu tố tương ứng)
*Ta có: DE= AD+EA
=> DE= CE+DB
~ Học tốt ! ~
Cho (O;r). Qua trung điểm I của bán kính OA vẽ dây DE⊥DA
a)Từ giác ADOE là hình gì? Tại sao?
b) Tia đối của tia OA lấy điểm B sao cho A là trung điểm của OB.CMR: BD là tiếp tuyến của (O)
c) Vẽ tiếp tuyến xy tại D của (A;AD).Kẻ OH và BK⊥xy.CMR: DI2=OH.BK
a: Ta có: ΔODE cân tại O
mà OI là đường cao
nên I là trung điểm của DE
Xét tứ giác ADOE có
I là trung điểm chung của DE và AO
AD=AE
Do đó: ADOE là hình thoi
b: Xét ΔOAD có OA=OD=AD
nên ΔOAD đều
Xét ΔDBO có
DA là trung tuyến
DA=BO/2
Do đo: ΔDBO vuông tại D
=>DB vuông góc với OD
=>DB là tiếp tuyến của (O)
Cho đa thức f(x,y)=x*(y+1)^n - y*(x+1)^n-x+y . CMR f(x+y) chia hết cho x*y*(x-y)
1a. Cho x^2+y^2=2.CMR 2(x+1)(y+1) chia hết cho (x+y)(x+y+2)
b. Cho (x+y)(x+z)+(y+z)(y+x)=2(z+x)(z+y). CMR z^2=(x^2+y^2):2
Ta có x + y = 3
=> (x + y)2 = 9
<=> x2 + y2 + 2xy = 9
<=> 2xy = 4
<=> xy = 2
Khi đó x3 + y3 = (x + y)(x2 - xy + y2) = 3.(5 - 2) = 9
b) Ta có x - y = 5
<=> (x - y)2 = 25
<=> x2 - 2xy + y2 = 25
<=> -2xy = 10
<=> xy = -5
Khi đó x3 - y3 = (x - y)(x2 - xy + y2) = 5.(15 + 5) = 100
B1: Cho x,y,z = 0. Tính Q= ( x-y/z + y-z/x + z-x/y) ( z/x-y + x/y-z + y/ z-x)
B2: Cho x√x + y√y + z√z = 3√xyz. Tính Q = ( 1+ x/y) ( 1+ y/z)( 1+z/x)
cho x,y,z thuộc Z, CMR:
a) ( x - y) + | x + y| chia hết cho 2
b) ( x - y) - | x - y| chia hết cho 2
c) ( x - y -z) + || x + y| + z| chia hết cho 2
a) A = (x+y) + |x+y|
Nếu x+y >= 0 thì A = x+y+x+y = 2(x+y) chia hết cho 2Nếu x+y <0 thì A = 0 cũng chia hết cho 2.b) B = x - y - |x-y|
Nếu x-y >= 0 thì B = x-y-x+y = 0 chia hết cho 2Nếu x-y < 0 thì B = x - y + x - y = 2*(x-y) chia hết cho 2.c) C = x - y - z + ||x+y| + z|
Nếu |x+y| + z >= 0 thì C = x - y - z + |x+y| + z = x+y + |x+y| - 2y = A - 2y chia hết cho 2. (A là biểu thức A phần a)Nếu |x+y| + z < 0 thì C = x - y - z - |x+y| - z = x+y + |x+y| - 2y - 2z - 2|x+y| = A - 2y -2z - 2|x+y| chia hết cho 2. (A là biểu thức A phần a).a) Cho \(x + y = 12\) và \(xy = 35\). Tính \({\left( {x - y} \right)^2}\)
b) Cho \(x - y = 8\) và \(xy = 20\). Tính \({\left( {x + y} \right)^2}\)
c) Cho \(x + y = 5\) và \(xy = 6\). Tính \({x^3} + {y^3}\)
d) Cho \(x - y = 3\) và \(xy = 40\). Tính \({x^3} - {y^3}\)
`a, (x-y)^2 = (x+y)^2 - 4xy = 12^2 - 35 . 4 = 144 - 140 = 4`.
`b, (x+y)^2 = (x-y)^2 + 4xy = 8^2 + 20.4 = 64 + 80 = 144`
`c, x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 5^3 - 3 . 6 . 5 = 125 - 90 = 35`
`d, x^3 - y^3 = (x-y)^3 - 3xy(x-y) = 3^3 - 3 .40 . 3 = 27 - 360 = -333`.
1) Cho x:3=y.15 và x+y=-32.Tìm x,y
2)Cho 2x-5y và y-x=-27.Tìm x,y
3) Cho 3x=7y và x.y=189. Tìm x,y
4)Cho 4x=5y và x^2 - y^2=36. Tìm x,y
Mình cần gấp lắm ạ:)))
1) ta có: \(x:3=y.15\Rightarrow x\cdot\frac{1}{3}=y.15\Rightarrow\frac{x}{15}=\frac{y}{\frac{1}{3}}\)
ADTCDTSBN
...
2) bn ghi thiếu đề r
3) ta có: \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=7k\\y=3k\end{cases}}\)
mà xy = 189 => 7k.3k = 189
21 k2 = 189
k2 = 9 = 32 = (-3)2 => k = 3 hoặc k = - 3
TH1: k = 3
x = 7.3 => x = 21
y = 3.3 => y = 9
...
4) ta có: \(4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x^2}{25}=\frac{y^2}{16}\)
ADTCDTSBN
...