Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trâm Nguyễn
Xem chi tiết
Kiều Vũ Linh
19 tháng 12 2023 lúc 7:41

Số số hạng của A:

60 - 1 + 1 = 60 (số)

Do 60 ⋮ 3 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:

A = (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)

= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... + 2⁵⁸.(1 + 2 + 2²)

= 1.7 + 2⁴.7 + ... + 2⁵⁸.7

= 7.(1 + 2⁴ + ... + 2⁵⁸) ⋮ 7

Vậy A ⋮ 7

Ngọc Bảo Trúc Nguyễn
Xem chi tiết

Ta có: \(\frac{1}{21}>\frac{1}{30};\frac{1}{22}>\frac{1}{30};\ldots;\frac{1}{30}=\frac{1}{30}\)

Do đó: \(\frac{1}{21}+\frac{1}{22}+\cdots+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+\cdots+\frac{1}{30}=\frac{10}{30}=\frac13\) (1)

Ta có: \(\frac{1}{31}>\frac{1}{40};\frac{1}{32}>\frac{1}{40};\ldots;\frac{1}{40}=\frac{1}{40}\)

Do đó: \(\frac{1}{31}+\frac{1}{32}+\cdots+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+\cdots+\frac{1}{40}=\frac{10}{40}=\frac14\) (2)

Ta có: \(\frac{1}{41}>\frac{1}{50};\frac{1}{42}>\frac{1}{50};\ldots;\frac{1}{50}=\frac{1}{50}\)

Do đó: \(\frac{1}{41}+\frac{1}{42}+\cdots+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+\cdots+\frac{1}{50}=\frac{10}{50}=\frac15\) (3)

Từ (1),(2),(3) suy ra \(\left(\frac{1}{21}+\frac{1}{22}+\cdots+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+\cdots+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+\cdots+\frac{1}{50}\right)>\frac13+\frac14+\frac15=\frac{47}{60}\)

Ngọc Bảo Trúc Nguyễn
Xem chi tiết

Ta có: \(\frac{1}{21}>\frac{1}{30};\frac{1}{22}>\frac{1}{30};\ldots;\frac{1}{30}=\frac{1}{30}\)

Do đó: \(\frac{1}{21}+\frac{1}{22}+\cdots+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+\cdots+\frac{1}{30}=\frac{10}{30}=\frac13\) (1)

Ta có: \(\frac{1}{31}>\frac{1}{40};\frac{1}{32}>\frac{1}{40};\ldots;\frac{1}{40}=\frac{1}{40}\)

Do đó: \(\frac{1}{31}+\frac{1}{32}+\cdots+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+\cdots+\frac{1}{40}=\frac{10}{40}=\frac14\) (2)

Ta có: \(\frac{1}{41}>\frac{1}{50};\frac{1}{42}>\frac{1}{50};\ldots;\frac{1}{50}=\frac{1}{50}\)

Do đó: \(\frac{1}{41}+\frac{1}{42}+\cdots+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+\cdots+\frac{1}{50}=\frac{10}{50}=\frac15\) (3)

Từ (1),(2),(3) suy ra \(\left(\frac{1}{21}+\frac{1}{22}+\cdots+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+\cdots+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+\cdots+\frac{1}{50}\right)>\frac13+\frac14+\frac15=\frac{47}{60}\)

Hoàng Mai Trang
Xem chi tiết
Hoàng Mai Trang
Xem chi tiết
Xuân Tuấn Trịnh
27 tháng 4 2017 lúc 0:50

Bạn vào đây nhé! https://hoc24.vn/hoi-dap/question/206800.html

Câu hỏi giống nhau nên bạn vào link đó xem đỡ mất công mình ghi lại nhé!

Nguyễn Thị Bảo Yến
Xem chi tiết
Dương No Pro
5 tháng 11 2020 lúc 20:01

Giải:

a)    A = 21 + 22 + 23 + 24 + .............. + 22010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n mà 21 \(⋮\)cả 3 và 7

=>  A \(⋮\)cả 3 và 7

Vây  A \(⋮\)cả 3 và 7

b) B = 31 + 32 + 33 + 34 + ............... + 22010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n 

mà 32 \(⋮\)4

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 39 nằm trong dãy số đó mà 39 \(⋮\)13

=> B \(⋮\)cả 4 và 13

Vậy  B \(⋮\)cả 4 và 13

c)  C = 51 + 52 + 53 + 54 + ................... + 52010

Ta có : 

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n

mà 54 \(⋮\)6

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 62 nằm trong dãy số đó mà 62 \(⋮\)31 

=> C \(⋮\)cả 6 và 31

Vậy C \(⋮\)cả 6 và 31

d)  D = 71 + 72 + 73 + 74 + ...................... + 72010

Ta có :

Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n

mà 72 \(⋮\)8

Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 114 nằm trong dãy số đó mà 114 \(⋮\)57

=> D \(⋮\)cả 8 và 57

Vậy  D \(⋮\)cả 8 và 57

Học tốt!!!

Khách vãng lai đã xóa
6a01dd_nguyenphuonghoa.
Xem chi tiết

https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881

Cô làm rồi em nhá

6a01dd_nguyenphuonghoa.
Xem chi tiết

Câu a, xem lại đề bài

Câu b: 

    P =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)

   Vì  \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\)                =  \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)

         \(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\)                = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)

         \(\dfrac{1}{4^2}\)  < \(\dfrac{1}{3.4}\)               = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) 

     ........................

        \(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)

Cộng vế với vế ta có:  

0< P < 1 - \(\dfrac{1}{2023}\) < 1

Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp

 

Câu c:  

C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C 

B =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0 

Cộng vế với vế ta có: 

C+B =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)\(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0

             Mặt khác ta có: 

1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)

Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)

 

 

guyễn Quang Duy
Xem chi tiết
nobi nobita
9 tháng 3 2017 lúc 9:41

không có số nào thỏa mãn điều kiện bạn vừa cho