Cho đa thức P(x) =ax^2 bx c Cm p(-1),P(-2)<0 biết rằng 5a-3b 2c=0
Giúp mik với cần gấp
Cho đa thức f(x)= ax^2 + bx + c . CM rằng nếu x= 1 và x= -1 là nghiệm của đa thức f(x) thì a và c là hai số đối nhau
Vì nếu x = 1 và x = -1 là nghiệm của đa thức f(x)
=> f(1) = 0 và f(-1) = 0
Ta có:
f(1) = a + b + c = 0
và f(-1) = a - b + c =0
=> f(1) + f(-1) = a + b + c + a - b + c = 0
=> 2a + 2c = 0
=> a + c = 0
=> a và c trái dấu
Vậy: a và c là 2 số đối nhau
Cho đa thức f(x)=ax2+bx+c .Cm rằng nếu x=1 và -1 là nghiệm của đa thức trên thì avà c là 2 số đối nhau
Theo bài ra có: f(1)=0 và f(-1)=0
f(1)=a+b+c=0
f(-1)=a-b+c=0
Cộng 2 vế của 2 pt với nhau được:
a+b+c+a-b+c=0
<=> 2a+2c=0
<=> a+c=0
=> a=-c
Vậy a và c là 2 số đối nhau
cho đa thức f(x)=ax^2+bx+c biết f(0), f(1),f(2) thuộc Z CM f(x) thuộc Z
Cho đa thức f(x)= ax^2 + bx + c . CM rằng nếu x= 1 và x= -1 là nghiệm của đa thức f(x) thì a và c là hai số đối nhau
để x = 1 và x = -1 là nghiệm của đa thức thì
f(1) = a + b + c = 0 và f(-1) = a - b + c = 0
⇒ a + b + c + a - b + c = 0
⇒2a + 2c = 0 ⇒ a + c = 0
vậy a và c là hai số đối nhau
Cho đa thức P(x) = \(ax^2+bx+c\) =0 với mọi giá trị x . Cm a =b=c=0
Vì \(P\left(x\right)=ax^2+bx+c=0\forall x\) nên cho \(x=0\)
\(\Leftrightarrow a.0^2+b.0+c=0\)
\(\Rightarrow a=b=c=0\left(dpcm\right)\)
F(x)= ax+b ;a khác 0
biết F(1)= 0 ; F(2)= 4
G(x)= ax^2+bx+c ;a khác 0
biết G(1) = 0; G(-1)= 9 ; G(2)= 5
cho đa thức f(x)= ax^2+bx+ca khác 0
biết f(1)= f(-1)
CM :f(x)= f(-x)
no hiểu gì hết THIS IS HOW I DO NOT KNOW HOW TO APOLOGIZE OFFLINE
cho đa thức Q(x) = ax2 + bx + c
Cm Q(-3) - Q(1) ≥ 0 biết 2a - b = 0
Q(x) = ax2 + bx + c
ta có:Q(-3)=9a+(-3)b+c
Q(1)=a+b+c
Q(-3) - Q(1)=
(9a+(-3)b+c)-(a+b+c)
=(9a-a)+)+(-3b-b)+(c-c)
=8a+(-4)b
= 4.2a+4.-b
=4(2a-b)
thay 2a - b = 0 vào đa thức đã cho, ta được:
Q(-3) - Q(1) =4
=>
Q(-3) - Q(1) >0
mình nhầm 2 dòng cuối nhé phải là
Q(-3) - Q(1) =0
=>
Q(-3) - Q(1) ≥ 0
cho đa thức f(x) = ax^2 +bx +c
CM rằng nếu f(x) nhận 1 và -1 là nghiệm thì a và c là 2 số đối nhau
Ta có f(1)=a.12+b.1+c=a+b+c=0
f(-1)=a.(-1)2+b.(-1)+c=a-b+c=0
Ta có f(1)-f(-1)=(a+b+c)-(a-b+c)=a+b+c-a+b-c=2b=0
=>b=0
Thay b=0 vào f(1) ta có a+c=0
Vậy a và c là 2 số đối nhau
f(x) nhận 1vaf -1 là nghiệm thì:
f(1)= 0 <=> a+b+c=0 (1)
f(-1)= 0 <=> a-b+c=0 (2)
cộng vế theo vế của (1) và(2) ta có: 2a+2c=0
=> 2a=-2c
=> a=-c
Vậy a và c là hai số đối nhau nếu f(x) nhận 1 và -1 là nghiệm.
Cho đa thức: f(x)=ax2 + bx +c thỏa mãn f(1)=f(-1). CM: f(x)=f(-x) với mọi giá trị của x.
vì f(1)=f(-1)
suy ra a-b+c=a+b+c
=> a-b=a+b
=> 2b=0
=>b=0
thay vào f(x) và f(-x) suy ra điều phải cm
Với x=1 => f(x)=f(1)= a.1^2+b.1+c=a+b+c(1)
x=-1 => f(x)=f(-1)= a.(-1)^2+b.(-1)+c=a-b+c(2)
Từ (1) và (2) => b=-b
=> b.x=(-b).(-x)
=> f(x)=f(-x)=> đpcm