phân tích đa thúc sau thành nhân tử:
c)(x+y)^2-4(x+y)
53/trang 24: Phân tích các đa thức sau thành nhân tử:
c) x^2= 5x + 6
2)
a)phân tích đa thức thành nhân tử:C=4x2-9y2
b)tìm m để các đường thẳng y=2x+m và y=x-2m+3 cắt nhau tại một điểm nằm trên trục tung.
a,
C=\(4.x^2-9.y^2\)=\(\left(2y\right)^2-\left(3y\right)^2\)=\(\left(2x-3y\right).\left(2x+3y\right)\)
b,để các đường thẳng y=2x+m và y=x-2m+3 cắt nhau tại một điểm nằm trên trục tung thì m=-2m+3
<=>m=1
a)C=4x2-9y2=(2x-3y)(2x+3y)
b) hai đường thẳng y=2x+m và y=x-2m+3 cắt nhau tại 1 điểm trên trục tung khi
2 khác 1 (thỏa mãn) và m=-2m+3 <=> 3m=3<=> m=1
phân tích đa thúc thành nhân tử: x^2 +4x -y^2 +4
x² - 4x - y² + 4
= (x² - 4x + 4) - y²
= (x - 2)² - y²
= (x - y - 2)(x + y - 2)
Phân tích đa thức thành nhân tử:
c) 16-x2+2xy-y2
d) (x-1)2-4(2x-3)2
e) x3-3x2+3x-1
f) x2-7
c) \(16-x^2+2xy-y^2=\left(4-x+y\right)\left(4+x-y\right)\)
d) \(\left(x-1\right)^2-4\left(2x-3\right)^2=\left(5-3x\right)\left(5x-7\right)\)
e) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
e) \(x^2-7=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
c) \(16-x^2+2xy-y^2=\left(4-x+y\right)\left(4+x-y\right)\)
d) \(\left(x-1\right)^2-4\left(2x-3\right)^2=\left(5x-7\right)\left(5-3x\right)\)
e) \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
f) \(x^2-7=\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)\)
Bài 1 : Phân tích các đa thức sau thành nhân tử :
1) 15x + 15y 2) 8x - 12y
3) xy - x 4) 4x^2- 6x
Bài 2 : Phân tích các đa thức sau thành nhân tử :
1) 2(x + y) - 5a(x + y) 2) a^2(x - 5) - 3(x - 5)
3) 4x(a - b) + 6xy(a - b) 4) 3x(x - 1) + 5(x -1)
Bài 3 : Tính giá trị của biểu thức :
1) A = 13.87 + 13.12 + 13
2) B = (x - 3).2x + (x - 3).y tại x = 13 và y = 4
Bài 4 : Tìm x :
1) x(x - 5) - 2(x - 5) = 0 2) 3x(x - 4) - x + 4 = 0
3) x(x - 7) - 2(7 - x) = 0 4) 2x(2x + 3) - 2x - 3 = 0
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
Bài 1: Phân tích đa thức thành nhân tử
a)4(2-x)\(^2\)+xy-2y b)3a\(^2\)x-3a\(^2\)y+abx-aby
Bài 2: Phân tích đa thức thành nhân tử
a)x(x-y)\(^3\)-y(y-x)\(^2\)-y\(^2\)(x-y) b)2ax\(^3\)+6ax\(^2\)+6ax+18a
Bài 3: Phân tích đa thức thành nhân tử
a)x\(^2\)y-xy\(^2\)-3x+3y b)3ax\(^2\)+3bx\(^2\)+bx+5a+5b
Bài 4: Tính giá trị biểu thức
A=a(b+3)-b(3+b) tại a=2003 và b=1997
Bài 5: Tìm x, biết
a)8x(x-2017)-2x+4034=0 b)x\(^2\)(x-1)+16(1-x)=0
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
phân tích đa thúc thành nhân tử:
A=(x+y)(y+z)(z+x)+xyz
1) Đa thúc X^2+xy+x+y được phân tích thành nhân tử
2) biết x^2-7x+12=0 giá trị của x tìm được là
\(1,=x\left(x+y\right)+\left(x+y\right)=\left(x+1\right)\left(x+y\right)\\ 2,\Leftrightarrow x^2-3x-4x+12=0\\ \Leftrightarrow\left(x-3\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
bài 1 : phân tích đa thúc sau thành nhân tử chung
a) 2x2 - 7x + 3
b) x2 - 6x + 5
c) 5x(x-2y) + 2(2y-x)2
d) 7x(y-4)2 - (4-y)3
a) 2x2-6x-x+3 = 2x(x-3) - (x-3) = (x-3)(2x-1)
b) x2-x-5x+5 = x(x-1) - 5(x-1) = (x-1)(x-5)
c) 5x(x-2y) + 2( x-2y)2 = (x-2y)(5x+2x-2y) = (x-2y)(7x-2y)
chú ý : (A-B)2=(B-A)2
d) 7x(4-y)2 - (4-y)3 = ( 16-8y+y2) (7x-4+y)
a) \(2x^2-7x+3=2x^2-6x-x+3=2x\left(x-3\right)-\left(x-3\right)=\left(x-3\right)\left(2x-1\right)\)
b) \(x^2-6x+5=x^2-5x-x+5=x\left(x-5\right)-\left(x-5\right)=\left(x-5\right)\left(x-1\right)\)
c)\(5x\left(x-2y\right)+2\left(2y-x\right)^2=5x\left(x-2y\right)+2\left(x-2y\right)^2\\ =\left(x-2y\right)\left(5x+2x-4y\right)=\left(x-2y\right)\left(7x-4y\right)\)
d) \(7x\left(y-4\right)^2-\left(4-y\right)^3=7x\left(y-4\right)+\left(y-4\right)^3=\left(y-4\right)\left(7x-y-4\right)\)