Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hieu Tran
Xem chi tiết
Lập nick ms
Xem chi tiết
Trần Thùy Dung
27 tháng 1 2016 lúc 12:12

BÀI TOÁN PHỤ: CHứng minh rằng số chính phương lẻ chia cho 8 dư 1.

Giải: Xét số chính phương lẻ là \(m^2\left(m\in Z\right)\)

Như vậy m là số lẻ, đặt \(m=2n+1\)

Ta có:

\(m^2=\left(2n+1\right)^2=4n^2+4n+1=4.n.\left(n+1\right)+1\)

Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2

\(\Rightarrow4n\left(n+1\right) \) chia hết cho 8

\(\Rightarrow4.n.\left(n+1\right)+1\) chia 8 dư 1

Vậy ta có điều phải chứng minh.

Vì a lẻ nên \(a\ne0\), phương trình \(ax^2+bx+c=0\) là phương trình bậc hai.

Xét \(\Delta=b^2-4ac\): b lẻ, theo bài toán phụ có \(b^2=8k+1\left(k\in Z\right)\)

a,c lẻ \(\Rightarrow\) \(ac\) lẻ

Đặt \(ac=2l-1\left(l\in Z\right)\)

Do đó \(\Delta=b^2-4ac=8k+1-4.\left(2l-1\right)=8k+1-8l+4=8\left(k-l\right)+5 \)chia cho 8 dư 5, theo bài toán phụ trên ta có \(\Delta\) không phải số chính phương.

\(\Delta\) là số nguyên, không phải óố chính phương \(\Rightarrow\sqrt{\Delta}\) là số vô tỉ

Nghiệm của phương trình đã cho (nếu có) là: \(x=\frac{-b\pm\sqrt{\Delta}}{2a}\)

b,a\(\in Z\)\(\sqrt{\Delta}\) vô tỉ nên x là vô tỉ.

Vậy phương trình có nghiệm nếu có thì các nghiệm ấy không thể là số hữu tỉ.

  

  


ơng   là phươngax2+bx+c=0

 

 

 

Nhật Minh
27 tháng 1 2016 lúc 12:55

Bài này có sự liên quan giữa các số lẻ a;b;c không? ( không = khó )

Ham Học Hỏi
23 tháng 2 2018 lúc 19:42

ax^2 +bx +c = 0 (*)
(*) có nghiệm hữa tỷ <=> Δ = b^2 - 4ac là số chính phương lẻ
(vì 4ac chẵn và b lẻ)
Δ là số chính phương lẻ nên Δ chia 8 dư 1 (*)
với a, b , c là số nguyên lẻ nên có dạng:
a = 2m + 1; b = 2n +1; c = 2p + 1 ( m,n,p là số nguyên)
=> Δ = (2n +1)^2 - 4(2m+1)(2p+1)
= 4n^2 + 4n + 1 - 4(4mp + 2m + 2p + 1)
= 4n(n+1) - 8(mp + m + p) - 3 = 4n(n+1) - 8(mp + m + p) - 8 + 5
vì 4n(n+1) - 8(mp + m + p) - 8 chia hết cho 8 => Δ chia 8 dư 5 mâu thuẩn với (*)
=> đpcm.
-------------------------
chứng minh (*):
A = (2k+1)^2 = 4k^2 + 4k + 1 = 4k(k + 1) + 1
k(k + 1) là tích 2 số nguyên liêu tiếp chia hết cho 2
=> 4k(k + 1) chia hết cho 8
=> A chia 8 dư 1

Ngọc Vĩ
Xem chi tiết
Thầy Giáo Toán
29 tháng 8 2015 lúc 9:23

Giả sử rằng \(r=\frac{p}{q}\) là nghiệm hữu tỉ của phương trình, trong đó \(p,q\) là các số nguyên, nguyên tố cùng nhau (tức phân số \(\frac{p}{q}\) tối giản).

Ta có ngay \(ap^2+bpq+q^2c=0\to4a^2p^2+4abpq+4acq^2=0\to\left(2ap+bq\right)^2=\left(bq\right)^2-4acq^2\)

Nếu q là số chẵn thì \(ap^2\) là số chẵn và do đó p chẵn, mâu thuẫn với tính nguyên tố cùng nhau.

Nếu q là số lẻ thì \(bq,2ap+bq\) là các số lẻ. Mặt khác một số chính phương lẻ luôn chia 8 dư 1 nên ta

suy ra \(\left(2ap+bq\right)^2-\left(bq\right)^2\vdots8.\) Do đó \(4acpq\vdots8\to acpq\vdots2\to p\vdots2\). Từ phương trình đầu suy ra \(cq^2\vdots2\to q\vdots2\), vô lí.

shitbo
21 tháng 4 2020 lúc 12:41

Cách khác:

Đặt \(a=2p+1;b=2q+1;c=2r+1\left(p,q,r\in Z\right)\)

Giả sử phương trình \(ax^2+bx+c=0\) không có nghiệm hữu tỉ thì \(\Delta=b^2-4ac\) phải là số chính phương

Ta có:\(\Delta=\left(2q+1\right)^2-4\left(2r+1\right)\left(2p+1\right)\)

\(=4q^2+4q+1-\left(8r-4\right)\left(2p+1\right)\)

\(=4q^2+4q+1-\left(16pr+8r-8p-4\right)\)

\(=4q^2+4q-16pr+8r-8p+5\)

\(=8\left[\frac{q\left(q+1\right)}{2}-2pr+r-p\right]+5\equiv5\left(mod8\right)\)

vô lý vì số chính phương lẻ không thể chia 8 dư 5

=> đpcm

Khách vãng lai đã xóa
trường
9 tháng 6 2022 lúc 9:31

a ơi tại sao b^2-4ac là số chính phương ạ

Nam Phạm An
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Hứa Thị Thu Thảo
Xem chi tiết
Không Tên
Xem chi tiết
Nguyễn Triệu Nhật Khánh
Xem chi tiết