gải bpt và biểu diễn tập nghiệm trên trục số
5x+2<3x-2
giải BPT sau rồi biểu diễn tập nghiệm trên trục số
x + 2 / x - 3 < 0
Ta có: \(\dfrac{x+2}{x-3}< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2>0\\x-3< 0\end{matrix}\right.\Leftrightarrow-2< x< 3\)
Vậy: S={x|-2<x<3}
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+2< 0\\x-3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+2>0\\x-3< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< -2\\x>3\end{matrix}\right.\\\left\{{}\begin{matrix}x>-2\\x< 3\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow-2< x< 3\)
Vậy ...
giải bpt sau và biểu diễn tập nghiệm trên trục số
\(\frac{3x+1}{-5}\ge\frac{2x-4}{-3}\)
Giải và biểu diễn tập nghiệm bpt sau trên trục số :\(\frac{2x+1}{4}-\frac{3x-2}{2}\ge\frac{1}{4}\)
1) Giải PT sau giá trị tuyệt đối của x-7= 2x+3
2) Giải BPT và biểu diễn tập nghiệm trên trục số: \(3x^2>0\)
a) |x-7|=2x+3 (1)
Ta có:|x-7|=x-7<=>x-7 \(\ge\) 0<=>x\(\ge\)7
|x-7|=-(x-7)<=>x-7<0<=>x<7
Nếu x\(\ge\) 7thì (1) <=>x-7=2x+3
<=>x-2x=7+3
<=>-x = 10
<=>x=-10 (ko thỏa mãn đk)
Nếu x<7 thì (1) <=>-(x-7)=2x+3
<=>-x+7=2x+3
<=>-x-2x=-7+3
<=>-3x=-4
<=>x=4/3 (thỏa mãn đk)
Giải và biểu diễn tập nghiệm bpt sau trên trục số : \(\frac{2x+1}{4}-\frac{3x-2}{2}\ge\frac{1}{4}\)
\(\Leftrightarrow\frac{2x+1-6x+4}{4}-\frac{1}{4}\ge0\Leftrightarrow\frac{-4x+4}{4}\ge0\Rightarrow-4\left(x-1\right)\ge0\left(4>0\right)\Rightarrow x-1\le0\left(-4
Giải bpt sau và biểu diễn tập nghiệm của bpt đó trên trục số
A.3x-11<8x+4
Help me
còn câu b nx ạ. Giupp mình vs. Mình cammon nhiuu
hệ bpt\(\left\{{}\begin{matrix}x^2-5x+4\le0\\x^2-\left(m^2+3\right)+2\left(m^2+1\right)\le0\end{matrix}\right.\) có tập nghiệm biểu diễn trên trục số có độ dài bằng 1 , với giá trị của m là
Xét \(x^2-5x+4\le0\Leftrightarrow1\le x\le4\Rightarrow D_1=\left[1;4\right]\)
Xét \(x^2-\left(m^2+3\right)x+2\left(m^2+1\right)\le0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-m^2-1\right)\le0\)
- Nếu \(\left|m\right|\ge1\Rightarrow D_2=\left[2;m^2+1\right]\)
- Nếu \(\left|m\right|< 1\Rightarrow D_2=\left[m^2+1;2\right]\)
Do \(2\in\left[1;4\right]\), để \(D=D_1\cap D_2\) là 1 đoạn có độ dài bằng 1
\(\Leftrightarrow\left[{}\begin{matrix}m^2+1=1\\m^2+1=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\pm\sqrt{2}\end{matrix}\right.\)
Giải BPT sau và biểu diễn tập nghiệm trên trục số: \(\frac{2-x}{3}< \frac{3-2x}{5}+\frac{1}{3}\)
\(\frac{2-x}{3}< \frac{3-2x}{5}+\frac{1}{3}\)
\(\Leftrightarrow5\left(2-x\right)< 3\left(3-2x\right)+5\)
\(\Leftrightarrow10-5x< 9-6x+5\)
\(\Leftrightarrow10-5x< -6x+14\)
\(\Leftrightarrow x< 4\)
Vậy bất phương trình có tập nghiệm là: S ={x| x < 4}
#Học tốt!
Viết tập hợp nghiệm của bất phương trình sau bằng kí hiệu tập hợp và biểu diễn tập nghiệm trên trục số. 2 > x