Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Lan Anh
Xem chi tiết
Song tử
Xem chi tiết
lê thị thu thảo
Xem chi tiết
Akai Haruma
27 tháng 8 lúc 21:40

Lời giải:

Áp dụng TCDTSBN:

$\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0$

$\Rightarrow 12x=15y; 20z=12x$

$\Rightarrow 12x=15y=20z$

$\Rightarrow \frac{12x}{60}=\frac{15y}{60}=\frac{20z}{60}$

$\Rightarrow \frac{x}{5}=\frac{y}{4}=\frac{z}{3}$

Tiếp tục áp dụng TCDTSBN:

$\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{5+4+3}=\frac{96}{12}=8$

$\Rightarrow x=8.5=40; y=8.4=32; z=3.8=24$

 

Nguyễn Thị Huyền Diệp
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 3 2022 lúc 14:46

\(x^6+\left(y^6+15y^4+75y^2+125\right)+z^3-3x^2y^2z-15x^2z=0\)

\(\Leftrightarrow x^6+\left(y^2+5\right)^3+z^3=3x^2\left(y^2+5\right)z\)

Ta có:

\(x^6+\left(y^2+5\right)^3+z^3\ge3\sqrt[3]{x^6\left(y^2+5\right)^3z^3}=3x^2\left(y^2+5\right)z\)

Đẳng thức xảy ra khi và chỉ khi:

\(x^2=y^2+5=z\)

Từ \(x^2=y^2+5\Rightarrow\left(x-y\right)\left(x+y\right)=5\)

\(\Rightarrow\left(x;y\right)=\left(3;2\right)\Rightarrow z=9\)

Vậy có đúng 1 bộ số nguyên dương thỏa mãn pt:

\(\left(x;y;z\right)=\left(3;2;9\right)\)

Trần Hà Hương
Xem chi tiết
GoKu Đại Chiến Super Man
26 tháng 1 2016 lúc 13:18

bạn bấm vào đúng 0 sẽ ra kết quả 

mình làm bài này rồi

Angela
Xem chi tiết
Trần Ánh Dương
Xem chi tiết
Do Ngoc Thach
Xem chi tiết
saobangngok
Xem chi tiết
Thắng Nguyễn
11 tháng 10 2016 lúc 11:32

Ta có:

\(8x+8y+8z< 8x+9y+10z\)

\(\Rightarrow x+y+z< \frac{100}{8}< 13\)

\(\Rightarrow Gt\Leftrightarrow11< x+y+z< 13\)

Mà x+y+z nguyên dương \(\Rightarrow x+y+z=12\)

Ta có hệ: \(\hept{\begin{cases}x+y+z=12\left(1\right)\\8x+9y+10z=100\left(2\right)\end{cases}}\)

Nhân 2 vế của (1) với 8 ta đc:

\(\hept{\begin{cases}8x+8y+8z=96\left(3\right)\\8x+9y+10z=100\left(2\right)\end{cases}}\)

Trừ theo vế của (2) cho (3) ta đc:\(y+2z=4\left(4\right)\).

Từ \(\left(4\right)\Rightarrow z=1\)(vì nếu \(z\ge2\), thì do\(y\ge1\Rightarrow y+2z\ge4\),Mâu thuẫn)

Với \(z=1\Rightarrow y=2;x=9\)

Vậy...

alibaba nguyễn
11 tháng 10 2016 lúc 9:55

Do các số x,y,zx,y,z nguyên dương nên
x+y+z>11 suy ra x+y+z≥12

100=8(x+y+z)+(y+2z)≥96+(y+2z)
Suy ra 
4≥y+2z≥3
Tức là 
y+2z ∈ {3;4}
Theo đề bài thì 
8x+9y+10z=100
Số y là số chẵn .
Tức là y+2z cũng là số chẵn .
Suy ra 
y+2z=4 Hay y=2; z=1
Thế ngược lại vào 
8x+9y+10z=100 tìm được x=9
Vậy  (x,y,z)=(9,2,1)

Trần Văn Thành
11 tháng 10 2016 lúc 20:20

gioi qua