4x2-9=0
Tìm X:
a) 16x2-24x+9=25
b) x2+10x+9=0
c) x2-4x-12=0
d) x2-5x-6=0
e) 4x2-3x-1=0
f) x4+4x2-5=0
`a)16x^2-24x+9=25`
`<=>(4x-3)^2=25`
`+)4x-3=5`
`<=>4x=8<=>x=2`
`+)4x-3=-5`
`<=>4x=-2`
`<=>x=-1/2`
`b)x^2+10x+9=0`
`<=>x^2+x+9x+9=0`
`<=>x(x+1)+9(x+1)=0`
`<=>(x+1)(x+9)=0`
`<=>` \(\left[ \begin{array}{l}x=-9\\x=-1\end{array} \right.\)
`c)x^2-4x-12=0`
`<=>x^2+2x-6x-12=0`
`<=>x(x+2)-6(x+2)=0`
`<=>(x+2)(x-6)=0`
`<=>` \(\left[ \begin{array}{l}x=-2\\x=6\end{array} \right.\)
`d)x^2-5x-6=0`
`<=>x^2+x-6x-6=0`
`<=>x(x+1)-6(x+1)=0`
`<=>(x+1)(x-6)=0`
`<=>` \(\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.\)
`e)4x^2-3x-1=0`
`<=>4x^2-4x+x-1=0`
`<=>4x(x-1)+(x-1)=0`
`<=>` \(\left[ \begin{array}{l}x=1\\x=-\dfrac14\end{array} \right.\)
`f)x^4+4x^2-5=0`
`<=>x^4-x^2+5x^2-5=0`
`<=>x^2(x^2-1)+5(x^2-1)=0`
`<=>(x^2-1)(x^2+5)=0`
Vì `x^2+5>=5>0`
`=>x^2-1=0<=>x^2=1`
`<=>` \(\left[ \begin{array}{l}x=1\\x=-1\end{array} \right.\)
`4x=2+xx+1x<=>4x=2+3x<=>4x-3x=2<=>1x=2<=>x=2`
(2x+5)(4x2-9)=0
(2x + 5)(4x2 - 9) = 0
<=> \(\left[{}\begin{matrix}2x+5=0\\4x^2-9=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{-5}{2}\\x^2=\dfrac{9}{4}< =>x=\pm\dfrac{3}{2}\end{matrix}\right.\)
KL: \(x\in\left\{\dfrac{-5}{2};\pm\dfrac{3}{2}\right\}\)
(4x2-9)(x+2)=0
(4x^2-9)(x+2)=0
⇔ (4x^2-9)=0 -> (2x-3)(2x+3)=0 -> 2x-3=0 -> x=3/2
2x+3=0 -> x= -3/2
(x+2)=0 -> x=-2
Vậy tập nghiệm S={ 3/2;-3/2;-2}
(4x2-9)(x+2) = 0
<=> [(2x)2 - 32] (x+2) = 0
<=> ( 2x+3)(2x-3)(x+2) = 0
<=> 2x+3 = 0 hoặc 2x-3 = 0 hoặc x+2 = 0
<=> 2x = 0-3 hoặc 2x = 0+3 hoặc x = 0-2
<=> 2x = -3 hoặc 2x = 3 hoặc x = -2
<=> 2x:2 = -3:2 hoặc 2x:2 = 3:2 hoặc x = -2
<=> x = -3/2 hoặc x = 3/2 hoặc x = -2
Giair phương trình
1) 2x2-3x-2=0 7) (2x2-3x-4)2=(x2-x)2
2) 4x2-7x-2=0 8) \(\dfrac{2}{x+1}-\dfrac{3}{x+2}=\dfrac{1}{3x+3}\)
3) 4x2+5x-6=0 9) \(\dfrac{x}{x-3}=\dfrac{1}{x+2}\)
4) 4x2+5x-9=0 10) \(\dfrac{4}{2x-3}-\dfrac{7}{3x-5}=0\)
5) 5x2-18x-8=0 11) \(\dfrac{7}{x+2}+\dfrac{2}{x+3}=\dfrac{1}{x^2+5x+6}\)
6) (3x2+2x+4)2=(x2-4)2 12) \(\dfrac{4}{x-2}+\dfrac{x}{x+1}=\dfrac{x^2-2}{x^2-x-2}\)
Giúp em vs em đag cần câu tl gấp em c.ơn trước
(x2 + 9) (9x2 -1) = 0
(4x2 -9) (2x-1 -1) =0
( 3x+2) (9-x2 ) =0
(3x+3)2 ( 4x - 42 ) =0
2(x-5) ( x+2) =1
a: (x^2+9)(9x^2-1)=0
=>9x^2-1=0
=>x^2=1/9
=>x=1/3 hoặc x=-1/3
b: (4x^2-9)(2^(x-1)-1)=0
=>4x^2-9=0 hoặc 2^(x-1)-1=0
=>x^2=9/4 hoặc x-1=0
=>x=1;x=3/2;x=-3/2
c: (3x+2)(9-x^2)=0
=>(3x+2)(3-x)(3+x)=0
=>\(\left[{}\begin{matrix}3x+2=0\\3-x=0\\3+x=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{2}{3};3;-3\right\}\)
d: (3x+3)^2(4x-4^2)=0
=>3x+3=0 hoặc 4x-16=0
=>x=4 hoặc x=-1
e: \(2^{\left(x-5\right)\left(x+2\right)}=1\)
=>(x-5)(x+2)=0
=>x-5=0 hoặc x+2=0
=>x=5 hoặc x=-2
Tìm x biết ( 2 x – 3 ) 2 – 4 x 2 + 9 = 0
A. x = 1 2
B. x = - 3 2
C. x = 3 2
D. x = 2 3
( 2 x – 3 ) 2 – 4 x 2 + 9 = 0 ⇔ ( 2 x – 3 ) 2 – ( 4 x 2 – 9 ) = 0 ⇔ ( 2 x – 3 ) 2 – ( ( 2 x ) 2 – 3 2 ) = 0 ⇔ ( 2 x – 3 ) 2 – ( 2 x – 3 ) ( 2 x + 3 ) = 0
ó (2x – 3)(2x – 3 – 2x – 3) = 0
ó (2x – 3)(-6) = 0
ó 2x – 3 = 0
ó x = 3 2
Đáp án cần chọn là: C
Giải các phương trình sau: 1) 4x2 - 9 = 0; 2) - 2x2 + 50 = 0;3) 3x2 + 11 = 0
g, 4x2 - 25 - (2x-5) (2x+7) = 0 i, x3+27+(x+3)(x-9) = 0
g) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\)
\(\Rightarrow-2\left(2x-5\right)=0\Rightarrow x=\dfrac{5}{2}\)
i) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-2x\right)=0\Rightarrow x\left(x+3\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)