chứng minh rằng abcd chia hết cho 4 thì d+2c chia hết cho 4
Bài 1 : Chứng tỏ rằng :
a, Nếu ( d + 2c ) chia hết cho 4 thì abcd chia hết cho 4
b, Nếu ( d + 2c +4b ) chia hết cho 8 thì abcd chia hết cho 8
a, Cho p và p + 4 là các số nguyên tố(p>3). Chứng minh rằng p+8 là hợp số .
b, Chứng minh rằng nếu (d+2c+4b) chia hết cho 8 thì abcd thì chia hết cho 8
Lời giải:
a. Vì $p$ nguyên tố lớn hơn $3$ nên $p$ không chia hết cho $3$.
Nếu $p$ chia $3$ dư $2$, $p$ có dạng $p=3k+2$.
$p+4=3k+6\vdots 3$. Mà $p+4>3$ nên không là số nguyên tố (trái đề)
Do đó $p$ chia $3$ dư $1$
Khi đó: $p+8=3k+1+8=3(k+3)$ chia hết cho $3$. Mà $p+8>3$ nên $p+8$ là hợp số (đpcm)
b.
$\overline{abcd}=1000a+100b+10c+d$
$=1000a+96b+8c+(d+2c+4b)$
$=8(125a+12b+c)+(d+2c+4b)$
Vì $8(125a+12b+c)\vdots 8; d+2c+4b\vdots 8$
$\Rightarrow \overline{abcd}\vdots 8$
Ta có đpcm.
Cho số tự nhiên có 4 chữ số abcd . Chứng tỏ rằng:
a/ Nếu (d + 2c) chia hết cho 4 thì abcd chia hết cho 4.
b/ Nếu (d + 2c + 4d) chia hết cho 8 thì abcd chia hết cho 8.
Cho mình hỏi 2 ý cuối nha :
Bài 1 : Chứng tỏ rằng :
a, Nếu ( d + 2c ) chia hết cho 4 thì abcd chia hết cho 4
b, Nếu ( d + 2c + 4b ) chia hết cho 8 thì abcd chia hết cho 8
*Ai đúng mình like cho*
Nếu được thì ác bạn giúp mình nha >.< Ai nhanh và đúng mình like cho nhé.
Chứng tỏ rằng ;
a, Số tự nhiên có dạng aaaaaa luôn chia hết cho 1001
b, ( abc - cba ) chia hết cho 99
c, Nếu ( d + 2c ) chia hết cho 4 thì abcd chia hết cho 4
d, Nếu ( d + 2c + 4b ) chia hết cho 8 thì abcd chia hết cho 8
a) Cho p và p+4 là các số nguyên tố (p>3). Chứng minh rằng p+8 là hợp số
b) Chứng minh rằng: nếu ( d+2c+4b0 chia hết cho 8 thì abcd chia hết cho 8
a) Vì p là số nguyên tố lớn hơn 3 nên p chia cho 3 dư 1 hoặc 2
+) \(p\equiv2\left(mod3\right)\)
\(\Rightarrow p+4\equiv6\left(mod3\right)\equiv0\left(mod3\right)\)
\(\Rightarrow p+4⋮3\)
Mà \(p+4>3\) nên \(p+4\) là hợp số (loại)
\(\Rightarrow p\equiv1\left(mod3\right)\)
\(\Rightarrow p+8\equiv9\left(mod3\right)\)
\(\Rightarrow p+8⋮3\)
Vì p + 8 > 3
\(\Rightarrow\)p + 8 là hợp số (đpcm)
b) (d + 2c + 4b) như thế mới đúng chứ nhỉ?!
Ta có: \(\overline{abcd}=1000a+100b+10c+d\)
\(=4b+2c+d+1000a+96b+8c\)
Mà \(1000a⋮8\); \(96b⋮8\)và \(8c⋮8\)
\(\Rightarrow4b+2c+d⋮8\)
\(\Rightarrow\overline{abcd}⋮8\) (đpcm)
Nếu bạn thấy mình làm khó hiểu câu a thì để mình làm cách khác
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 với k là số tự nhiên khác 0
Với p = 3k + 2
=> p + 4 = 3k + 6 chia hết cho 3
p + 4 > 3 => p + 4 là hợp số
=> p = 3k + 2 (loại)
=> p = 3k + 1
=> p + 8 = 3k + 9 chia hết cho 3
Mà p + 8 > 3 nên p + 8 là hợp số (đpcm)
Chứng tỏ rằng :
a, Số tự nhiên có dạng aaaaaa luôn chia hết cho 1001
b, (abc - cba ) chia hết cho 99 , a > c
c, Nếu ( d + 2c + ab ) chia hết cho 8 thì abcd chia hết cho 8
d, Nếu ( d + 2c) chia hết cho 4 thì abcd chia hết cho 4
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
Đang định hỏi thì ....