Tính tích : A = (1-1/2014)×(1-2/2014)×(1-3/2014)...(1-2015/2014)
Tính tổng:
A= 1+2014^1+2014^2+2014^3+...+2014^2014+2014^2015
B = 3-3^2+3^3+3^4+...+3^100
A = 1 + 2014^1 + 2014^2 + 2014^3 + ... + 2014^2014 + 2014^2015
2014A = 2014^1 + 2014^2 + 2014^3 + 2014^4 + ... 2014^2015 + 2014^2016
2014A - A = ( 2014^1 + 2014^2 + 2014^3 + 2014^4 + .... + 2014^2015 + 2014^2016 ) - ( 1 + 2014^1 + 2014^2 + 2014^3 + ... + 2014^2014 + 2014^2015 )
2013A = 2014^2016 - 1
A = 2014^2016 - 1 / 2013
B = 3 - 3^2 + 3^3 + 3^4 + ... + 3^100 ( đề hơi vui )
3B = 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101
3B - B = ( 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101 ) - ( 3 - 3^2 + 3^3 + 3^4 + ... + 3^100 )
2B = ( 3^2 - 3^3 + 3^4 + 3^5 + ... + 3^101 ) - 3 + 3^2 - 3^3 - 3^4 - ... - 3^100
2B = 3^2 - 3^3 + 3^101 - 3 + 3^2 - 3^3
2B = 9 - 27 + 3^101 - 3 + 9 - 27
2B = -18 + 3^101 - 3 + ( -18 )
2B = -39 + 3^101
B = -39 + 3^101 / 2
A = 1 + 2014 + 20142 + 20143 + ... + 20142014 + 20142015
2014A = 2014 + 20142 + 20143 + 20144 + ... + 20142015 + 20142016
2014A - A = ( 2014 + 20142 + 20143 + 20144 + ... + 20142015 + 20142016 ) - ( 1 + 2014 + 20142 + 20143 + ... + 20142014 + 20142015 )
2013A = 20142016 - 1
A \(=\frac{2014^{2016}-1}{2013}\)
B = 3 - 32 + 33 - 34 + ... + 3100
3B= 32 - 33 + 34 - 35 + ... + 3101
3B + B = ( 3 - 32 + 33 - 34 + ... + 3100 ) + ( 32 - 33 + 34 - 35 + ... + 3101 )
4B = 3 + 3101
B = \(\frac{3+3^{101}}{4}\)
tính tích:
\(\left(1-\frac{1}{2014}\right).\left(1-\frac{2}{2014}\right).\left(1-\frac{3}{2014}\right)...\left(1-\frac{2015}{2014}\right)\)
NHẤT ĐỊNH SẼ CÓ PHÂN SỐ \(1-\frac{2014}{2014}=0\)
NÊN tích dãy số đó là 0
tk nha
Tính:
(2014/1+2014/2+2013/3+...+2/2014+1/2015)/(3/2015+3/2014+...+3/2)
so sanh a= 2015^2014+1/2015^2014-1 va b= 2015^2014-1/2015^2014-3
\(A=\frac{2015^{2014}+1}{2015^{2014}-1}=\frac{2015^{2014}-1+2}{2015^{2014}-1}=1+\frac{2}{2015^{2014}-1}.\)
\(B=\frac{2015^{2014}-1}{2015^{2014}-3}=\frac{2015^{2014}-3+2}{2015^{2014}-3}=1+\frac{2}{2015^{2014}-3}\)
mà \(\frac{2}{2015^{2014}-1}< \frac{2}{2015^{2014}-3}\)( 20152014 -1 > 20152014 - 3)
\(\Rightarrow A< B\)
Tính A/B, biết A=1/2+1/3+...+1/2016 và B=1/2015+2/2014+...2014/2+2015/1
Tính gía trị biểu thức:
\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{2014\sqrt{2013}+2013\sqrt{2014}}+\frac{1}{2015\sqrt{2014}+2014\sqrt{2015}}\)
Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014
Tính tích
\(\left(1-\frac{1}{2014}\right)\times\left( 1-\frac{2}{2014}\right)\times\left(1-\frac{3}{2014}\right).....\left(1-\frac{2015}{2014}\right)\)
Cho a^2014 + b^2014 + c^2014 =1 và a^2015 + b^2015 + c^2015 =1. Tính tổng A= a^2013+b^2014+c^2015
a2014+b2014+c2014=1
a2015+b2015+c2015=1
=>a2014+b2014+c2014=a2015+b2015+c2015=1
=>a=b=1
=>A=3
Cho A= 1/2+1/3+1/4+..+1/2016
B= 2015/1+2014/2+2013/3+....+2/2014+1/2015. Tính B/A