Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Thanh Trần
Xem chi tiết
Nguyễn Thị Ngọc Hân
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 7 2020 lúc 9:20

ĐKXĐ: ...

\(x\sqrt{x}-3x\sqrt{y}+3y\sqrt{x}-y\sqrt{y}=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^3=0\)

\(\Leftrightarrow\sqrt{x}=\sqrt{y}\Leftrightarrow x=y\)

Thay xuống dưới:

\(x^2-2x+x=0\Leftrightarrow x^2-x=0\)

\(\Rightarrow\left[{}\begin{matrix}x=y=0\\x=y=1\end{matrix}\right.\)

Âu Dương Thiên Vy
Xem chi tiết
Đỗ Ngọc Hải
6 tháng 2 2018 lúc 20:20

\(\hept{\begin{cases}x-3y+\sqrt{x^2+3y^2}=0\left(1\right)\\\sqrt{2y-1}+2x^2-y^2-3x+1=0\left(2\right)\end{cases}}\)      \(\left(ĐKXĐ:y\ge\frac{1}{2}\right)\)
Xét phương trình (1) 
\(\sqrt{x^2+3y^2}=3y-x\)
\(\Rightarrow x^2+3y^2=x^2-6xy+9y^2\)
\(\Leftrightarrow6y^2-6xy=0\)
\(\Leftrightarrow y\left(y-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=0\left(ktmđkxđ\right)\\x=y\end{cases}}\)
Thay x=y vào (2) ta đc:
\(\sqrt{2y-1}+2y^2-y^2-3y+1=0\)
\(\Leftrightarrow\sqrt{2y-1}+y^2-3y+1=0\)
\(\Leftrightarrow\left(\sqrt{2y-1}-1\right)+\left(y^2-3y+2\right)=0\)
\(\Leftrightarrow\frac{2y-1-1}{\sqrt{2y-1}+1}+\left(y-2\right)\left(y-1\right)=0\)
\(\Leftrightarrow\left(y-1\right)\left(\frac{2}{\sqrt{2y-1}+1}+y-2\right)=0\)
\(\Rightarrow y=1\left(tmđkxđ\right)\)
Vậy nghiệm của hpt trên là (x;y)=(1;1)

Cuộc Sống
Xem chi tiết
Haibara Ai
Xem chi tiết
asuna
Xem chi tiết
tống thị quỳnh
Xem chi tiết
alibaba nguyễn
1 tháng 3 2018 lúc 13:26

\(\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\)

\(\Leftrightarrow\left(2x-\sqrt{y}\right)^2\left(x^2+x\sqrt{y}+y\right)=0\)

Kiệt Nguyễn
18 tháng 8 2020 lúc 9:46

\(\hept{\begin{cases}\frac{1}{3x}+\frac{2x}{3y}=\frac{x+\sqrt{y}}{2x^2+y}\left(1\right)\\\sqrt{y+\sqrt{y}+x+2}+\sqrt{3x+1}=5\left(2\right)\end{cases}}\)

\(ĐK:y>0;\frac{-1}{3}\le x\ne0;y+\sqrt{y}+x+2\ge0\)

Đặt \(\sqrt{y}=tx\Rightarrow y=t^2x^2\)thay vào (1), ta được: \(\frac{1}{3x}+\frac{2x}{3t^2x^2}=\frac{x+tx}{2x^2+t^2x^2}\)

Rút gọn biến x ta đưa về phương trình ẩn t : \(\left(t-2\right)^2\left(t^2+t+1\right)=0\Leftrightarrow t=2\Leftrightarrow\sqrt{y}=2x\ge0\)

Thay vào (2), ta được: \(\sqrt{4x^2+3x+2}+\sqrt{3x+1}=5\)\(\Leftrightarrow\left(\sqrt{4x^2+3x+2}-3\right)+\left(\sqrt{3x+1}-2\right)=0\)\(\Leftrightarrow\frac{\left(x-1\right)\left(4x+7\right)}{\sqrt{4x^2+3x+2}+3}+\frac{3\left(x-1\right)}{\sqrt{3x+1}+2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}\right)=0\)

Dễ thấy \(\frac{4x+7}{\sqrt{4x^2+3x+2}+3}+\frac{3}{\sqrt{3x+1}+2}>0\)nên \(x-1=0\Leftrightarrow x=1\Rightarrow y=4\)

Vậy hệ phương trình có 1 nghiệm duy nhất \(\left(x,y\right)=\left(1,4\right)\)

Khách vãng lai đã xóa
Dương Anh Quý
13 tháng 1 2022 lúc 18:27
Chiếm 1% tỷ lệ ông có tối đa 30% xốp giả dối
Khách vãng lai đã xóa
Vũ Lê Anh
Xem chi tiết
Nguyễn Thị Thương Hoài
26 tháng 11 2023 lúc 20:15

Đề bị lỗi công thức rồi em nhé!

Hoàng Thị Hoài Thương
Xem chi tiết