Cho x+y=1 và x > 0 . Tìm MAX của B= \(x^2y^3\)
Cho x^3+2xy+2y^2-2x-2y-3=0. Tìm Max, Min của P= x+y+1
1) Cho x;y>0 thoả mãn x+y=1 Tìm max B = \(x^2y^3\)
2) Cho x+y>0 thoả man x-y >= 1 Tìm max C = \(\frac{4}{x}-\frac{1}{y}\)
3) Tìm min M = \(\frac{x-3}{\sqrt{x-1}-\sqrt{x}}\)
Cho x + y = 1 và x > 0
Tìm Max : \(x^2y^3\)
Cho số thực x;y thỏa mãn: x^2 + xy + 2y^2 = 1 Tìm min và max của A = x - 2y + 3
pro rồi thì bạn cần gì mình giải nhỉ
??
\(A=x-2y+3\Rightarrow x=A+2y-3\)
\(\Rightarrow\left(2y+A-3\right)^2+y\left(A+2y-3\right)+2y^2=1\)
\(\Leftrightarrow8y^2+\left(5A-15\right)y+A^2-6A+8=0\)
\(\Delta=\left(5A-15\right)^2-32\left(A^2-6A+8\right)\ge0\)
\(\Leftrightarrow-7A^2+42A-31\ge0\)
\(\Rightarrow\dfrac{21-4\sqrt{14}}{7}\le A\le\dfrac{21+4\sqrt{14}}{7}\)
CHo x^3+ 2xy+ 2y^2- 2x- 2y-3= 0
Tìm Max của P= x+y+1
Giúp mình giải bài này nhá!!!!
Cho x^3+2xy+2y^2-2x-2y-3=0. Tìm Max, Min của P= x+y+1
Giúp mình với nhá, mình đang cần gấp!!!!
Cho x,y,z>0 và xy+yz+xz = 3xyz . Tìm Max P = \(\Sigma\dfrac{1}{x+2y+3z}\)
\(xy+yz+zx=3xyz\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
Có \(\dfrac{1}{x+2y+3z}=\dfrac{1}{\left(x+y\right)+\left(y+z\right)+2z}\le\dfrac{1}{9}\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{2z}\right)\le\dfrac{1}{9}\left(\dfrac{1}{4x}+\dfrac{1}{4y}+\dfrac{1}{4y}+\dfrac{1}{4z}+\dfrac{1}{2z}\right)=\dfrac{1}{9}\left(\dfrac{1}{4x}+\dfrac{1}{2y}+\dfrac{3}{4z}\right)\)
Tương tự cx có: \(\dfrac{1}{y+2z+3x}\le\dfrac{1}{9}\left(\dfrac{1}{4y}+\dfrac{1}{2z}+\dfrac{3}{4x}\right)\);\(\dfrac{1}{z+2x+3y}\le\dfrac{1}{9}\left(\dfrac{1}{4z}+\dfrac{1}{2x}+\dfrac{3}{4y}\right)\)
Cộng vế với vế \(\Rightarrow\Sigma\dfrac{1}{x+2y+3z}\le\dfrac{1}{9}\left(\dfrac{1}{4}+\dfrac{1}{2}+\dfrac{3}{4}\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{2}\)
Dấu "=" xayra khi x=y=z=1
Vậy \(P_{max}=\dfrac{1}{2}\)
Cho X^2+2XY+7(X+Y)+2Y^2+1=0. Tìm min, max=X+Y+1
Bài 1: CHo 2 số thực x,y sao cho x+y=1. Tìm Min của M=5x2+y2
Bài 2: Cho 2 số x,y thỏa mãn x2+2xy+8(x+y)+2y2+12=0 Tìm Max và Min của N=x+y+1