Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tung Roy
Xem chi tiết
Nguyễn Ngọc Anh Minh
24 tháng 8 2016 lúc 9:23

\(=a\left(a+2\right)\left(25a^2-1\right)=\left(a^2+2a\right)\left(25a^2-1\right)=\)

\(=25a^4-a^2+50a^3-2a=24a^4+48a^3+a^4+2a^3-a^2-2a\)

Ta có \(24a^4+48a^3\) chia hết cho 24

Xét

\(a^4+2a^3-a^2-2a=a^3\left(a+2\right)-a\left(a+2\right)=\left(a+2\right)\left(a^3-a\right)\)

\(=a\left(a^2-1\right)\left(a+2\right)=a\left(a-1\right)\left(a+1\right)\left(a+2\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a+2\right)\)

Đây là tích 4 số tự nhiên liên tiếp

Trong 4 số tự nhiên liên tiếp tồn tại 2 số chẵn liên tiếp trong đó có 1 số chia hết cho 4 số chẵn còn lại chia hết cho 2 => tích 4 số tự nhiên liên tiếp chia hết cho 8

Trong 3 số tự nhiên liên tiếp sữ tồn tại 1 số chia hết cho 3

=> tích 4 số tự nhiên liên tiếp chia hết cho cả 3 vag 8, mà 3 và 8 nguyên tố cùng nhau => tích 4 số tự nhiên liên tiếp chia hết cho 24

=> \(\left(a-1\right)a\left(a+1\right)\left(a+2\right)\) chia hết cho 24

Vậy \(a\left(a+2\right)\left(25a^2-1\right)\) chia hết cho 24

Chinh Phục Vũ Môn
Xem chi tiết
viet cute
Xem chi tiết
viet cute
2 tháng 7 2019 lúc 21:27

ta có : n(n+5)−(n−3)(n+2)=n2+5n−(n2+2n−3n−6)n(n+5)−(n−3)(n+2)=n2+5n−(n2+2n−3n−6)

=n2+5n−n2−2n+3n+6=6n+6=6(n+1)⋮6=n2+5n−n2−2n+3n+6=6n+6=6(n+1)⋮6

⇔6(n+1)⇔6(n+1) chia hết cho 66 với mọi n là số nguyên

⇔n(n+5)−(n−3)(n+2)⇔n(n+5)−(n−3)(n+2) chia hết cho 66 với mọi n là số nguyên

vậy n(n+5)−(n−3)(n+2)n(n+5)−(n−3)(n+2) chia hết cho 66 với mọi n là số nguyên (đpcm)

dao xuan viet
Xem chi tiết
Bùi phương anh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
7 tháng 9 2020 lúc 12:00

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

Khách vãng lai đã xóa
nghiem thi van anh
Xem chi tiết
Duyen Duong
Xem chi tiết
Lê Nhật Khôi
11 tháng 1 2018 lúc 19:01

Giả sử  \(\left(5^n-1\right)⋮4\)

Suy ra \(5^n⋮5\)(phù hợp)

Vậy \(\left(5^n-1\right)⋮4\)

Cách 2

Ta có:

\(5\equiv1\)(mod 4)

Suy ra \(5^n\equiv1\)(mod 4)

Suy ra \(5^n-1\equiv1-1\equiv0\)(mod 4)

Vậy \(\left(5^n-1\right)⋮4\)

wo ai ni
Xem chi tiết
Trần Thanh Phương
16 tháng 2 2019 lúc 21:44

Đặt \(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(3A=\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\)

\(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)

\(3A=\frac{1}{2}-\frac{1}{3n+2}\)

\(3A=\frac{3n+2-2}{2\left(3n+2\right)}\)

\(A=\frac{3n}{2\left(3n+2\right)}\cdot\frac{1}{3}\)

\(A=\frac{n}{2\left(3n+2\right)}\left(đpcm\right)\)

Khánh Vy
16 tháng 2 2019 lúc 21:49

Xét vế trái, ta có :

   \(\frac{1}{2.5}+\frac{1}{5.8}+......+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

   \(=\frac{1}{3}\left[\frac{3}{2.5}+\frac{3}{5.8}+.....+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

    \(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{3n-1}-\frac{1}{3n-2}\right)\)

    \(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{3n+2}\right)=\frac{1}{3}.\frac{3n}{2\left(3n+2\right)}=\frac{n}{2\left(3n+2\right)}\)

Vế trái đúng bằng vế phải. Đẳng thức đã được chứng tỏ là đúng

le tho ninh
Xem chi tiết
le tho ninh
7 tháng 1 2016 lúc 21:24

khong cao thu nao biet lam sao