Cho x y z là 3 số thực tuỳ ý tìm giá trị nhỏ nhất cửa biểu thức M==x+Y+z-yz-4x-3y+2017
Cho các số thực dương x,y,z. Tìm giá trị nhỏ nhất của biểu thức P= (xy+yz+zx) / (x²+y²+z²) + (x+y+z)³ / xyz
Cho các số thực dương x,y,z thỏa 4x + 3y + 4z = 22
Tìm giá trị nhỏ nhất của biểu thức \(P=x+y+z+\frac{1}{3x}+\frac{2}{y}+\frac{3}{z}\)
Ta khẳng định : Dấu '=' xảy ra tại x=a, y=b, z=c
Khi đó \(4a+3b+4c=22;\frac{1}{3x}=\frac{1}{3a}=\frac{x}{3a^2},\frac{2}{y}=\frac{2}{b}=\frac{2y}{b^2},\frac{3}{z}=\frac{3}{c}=\frac{3z}{c^2}\)và :
\(\frac{1}{3x}+\frac{x}{3a^2}\ge\frac{2}{3a},\frac{2}{y}+\frac{2y}{b^2}\ge\frac{4}{b},\frac{3}{z}+\frac{3z}{c^2}\ge\frac{6}{c}\)
\(\Rightarrow P\ge x+y+z+\left(\frac{2}{3a}-\frac{x}{3a^2}\right)+\left(\frac{4}{b}-\frac{2y}{b^2}\right)+\left(\frac{6}{c}-\frac{3z}{c^2}\right)\)
\(=\left(1-\frac{1}{3a^2}\right)x+\left(1-\frac{2}{b^2}\right)y+\left(1-\frac{3}{c^2}\right)z+\left(\frac{2}{3a}+\frac{4}{b}+\frac{6}{c}\right)\)(*)
Ta chọn a,b,c thích hợp để sử dụng giả thiết \(4x+3y+4z=22\).. Vậy thì các hệ số của x,y,z trong (*) phải thỏa:
\(\hept{\begin{cases}4a+3b+4c=22\\\frac{1-\frac{1}{3a^2}}{4}=\frac{1-\frac{2}{b^2}}{3}=\frac{1-\frac{3}{c^2}}{4}\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}}\)
Cho x,y,z là các số thực dương thỏa mãn đẳng thức xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{6\left(z^2+5\right)}}\)
Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:
cho ba số thực không âm x,y,z thỏa mãn xyz=1 . tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M=\(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\)
Theo em bài này chỉ có min thôi nhé!
Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)
Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0
Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
(chuyển vế qua dùng hằng đẳng thức là xong liền hà)
Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)
Vậy...
P/s: Ko chắc nha!
bạn bui thai hoc sao lại cmt linh tinh vậy :)) bạn ko có học thức à :> mà ý bạn cmt như vậy là sao hả ?
Cho x,y,z là các số thực thỏa mãn \(y^2+yz+z^2=1-\frac{3x^2}{2}\). Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P= x+y+z
tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức B=x+y+z. Biết rằng x,y,z là các số thực thỏa mãn điều kiện y^2+yz+z^2=1007-(3x^2)/2
a) Tìm giác trị nhỏ nhất của biểu thức A=\(3x^2+y^2+4x-y\)
b) Cho các số thực x,y,z thỏa mãn 2x+2y+z=4 .Tìm giá trị lớn nhất của biểu thức B=2xy+yz+zx
mấy bạn chuyên toán giải giùm mk bài b) giùm ạ, mk đaq rất cần
Cho x,y,z là các số thực dương thỏa mãn x + y +z ≥ 2019 . Tìm giá trị nhỏ nhất của biểu thức T = \(\dfrac{x^2}{x+\sqrt{yz}}\) + \(\dfrac{y^2}{y+\sqrt{zx}}\) + \(\dfrac{z^2}{z+\sqrt{xy}}\)
\(T\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+x+y+z}=\dfrac{x+y+z}{2}\ge\dfrac{2019}{2}\)
áp dụng BĐT:\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\) với a,b,c,x,y,z là số dương
ta có BĐT Bunhiacopxki cho 3 bộ số:\(\left(\dfrac{a}{\sqrt{x}};\sqrt{x}\right);\left(\dfrac{b}{\sqrt{y}};\sqrt{y}\right);\left(\dfrac{c}{\sqrt{z}};\sqrt{z}\right)\)
ta có :
\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\left(x+y+z\right)\)\(=\left[\left(\dfrac{a}{\sqrt{x}}\right)^2+\left(\dfrac{b}{\sqrt{y}}\right)^2+\left(\dfrac{c}{\sqrt{z}}\right)^2\right]\).\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)\(\ge\left(\dfrac{a}{\sqrt{x}}.\sqrt{x}+\dfrac{b}{\sqrt{y}}.\sqrt{y}+\dfrac{c}{\sqrt{z}}.\sqrt{z}\right)^2=\left(a+b+c\right)^2\)
lúc đó ta có :\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)
ta có \(T=\dfrac{x^2}{x+\sqrt{yz}}+\dfrac{y^2}{y+\sqrt{zx}}+\dfrac{z^2}{z+\sqrt{xy}}\)\(\ge\dfrac{\left(x+y+z\right)^2}{x+\sqrt{yz}+y+\sqrt{zx}+z+\sqrt{xy}}\) mà ta có :
\(\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\)\(\le\dfrac{x+y}{2}+\dfrac{x+z}{2}+\dfrac{z+y}{2}\)\(\Rightarrow\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\le x+y+z\)
\(\Rightarrow T=\dfrac{2019}{2}\Leftrightarrow x=y=z=673\)
vậy \(\text{MinT}=\dfrac{2019}{2}\) khi và chỉ khi x=y=z=673
Cho x, y, z là các số thực dương thỏa mãn: xyz = 1. Tìm giá trị nhỏ nhất của
biểu thức A =\(\dfrac{1}{x+y+z}-\dfrac{2}{xy+yz+zx}\)