Cho A= 1.99+2.98+3.97+...+99.1
và B= 1.101+2.102+3.103+...+99.199
Tính A+B
cho A=1.99 + 2.98 + 3.97 + ..... + 99.1
và B= 1.101+2.102+3.103+.....+9.199
tính A+B
cho A = 1.99 + 2.98 + 3.97 + ... + 99.1 và B = 1.101 + 2.102 + 3.103 + ... + 99.199
Tính A+B
A+B = (1.99+2.98+3.97+...+99.1)+(1.101+2.102+3.103+...+99.199)
A+B = (1.99+1.101)+(2.98+2.102)+(3.97+3.103)+...+(99.1+99.199)
A+B = 1(99+101) + 2(98+102) + 3(97.103)+...+99(1+199)
A+B = 1.200 + 2.200 + 3.200 +...+ 99.200
A+B = 200.(1+2+3+...+200)
A+B = 200.4950
A+B = 990000
Tính A+B
A= 1.99+2.98+3.97+.............+99.1
B=1.101+2.102+3.103+............+99.199
so sánh P và Q
P=2016/2017+2017/2018
Q= 2016+2017+2018/2017+2018+2019
A+B=(1.99+2.98+...+99.1)+(1.101+2.102+...+99.199)
=(1.99+1.101)+(2.98+2.102)+...+(99.1+99.199)
=1.(99+101)+2.(98+102)+...+99(1+199)
=200+2.200+...+99.200
=200.(1+2+3+4+...+99)
=200.4950
=.....
So sánh
a) M=1/1^2+1/2^2+1/3^2+...................+1/50^2 và N=2
b) P= 2015^2015+1/2015^2016+1 và Q=2015^2016-2/2015^2017-2
Tính A+B biết
A=1.99+2.98+3.97+..............+99.1
B=1.101+2.102+3.103+.....................+99.199
a) Cho a= 1.9+2.98+3.97+...........99.1
Cho B=1.101+2.102+3.103+.............999.199
Tính A+ B
b) Cho a=1+2017+20172+20173+...........+20172017
Cho b= 20172018-1
So sánh A va B
Chứng minh rằng 12n+1 là phân số tối giản
30n+2
Giúp mình với Thanks!^^
A=1.101+2.102+3.103+...+299.399 B=1²+2²+5²+...+299².
So sánh A và B
B= 1.101 + 2.102 + 3.103 + ... + 99.199
Tính nhanh :
a,A= 1.99+2.98+3.97+...+50.50
b,B= 1.99 + 3. 97+ 5.95 +...+49.51
Xin vui lòng trình bày chi tiết !
Đăt A=1.3+5.7+9.11+...+97.99
B=3.5+7.9+11.13+...+99.101
Ta có: A+B=1.3+3.5+5.7+7.9+...+97.99+99.101
6(A+B)=1.3.6+3.5.6+5.7.6+…+97.99.6+99.101.6
=1.3.(5+1)+3.5.(7−1)+5.7(9−3)+…+97.99(101−95)+99.101.(103−97)
=1.3.5+1.3+3.5.7−1.3.5+5.7.9−3.5.7+…+97.99.101−95.97.99+99.101.103−97.99.101
=3+99.101.103=1029900
⇒A+B=171650
Lại có:
B−A=3.(5−1)+7.(9−5)+11.(13−9)+...+99.(101−97)
=4.(3+7+11+...+99)
=4.(3+99).252=5100
Suy ra ta có: {A+B=171650B−A=5100⇔ {A=83275B=88375
Vây 1.3+5.7+9.11+...+97.99=83275
b, B= 1.2.3+2.3.4+3.4.5+...+98.99.100
4B = (1.2.3+2.3.4+3.4.5+...+98.99.100).4
4B=1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+.....+98.99.100.(101-97)
4B= 1.2.3.4-0.1.2.3 + 2.3.4.5-1.2.3.4+......+98.99.100.101-97.98.99.100
4B=98.99.100.101
B=98.99.25.101
B=6999300
a) \(A=1.99+2.98+3.97+...+50.50\)
\(A=1.\left(100-1\right)+2.\left(100-2\right)+3.\left(100-3\right)+...+50.\left(100-50\right)\)
\(A=100.\left(1+2+3+...+50\right)-\left(1^2+2^2+3^2+...+50^2\right)\)
Xét \(1+2^2+3^2+...+50^2\)
\(=1.\left(2-1\right)+2.\left(3-1\right)+3\left(4-1\right)+...+50.\left(51-1\right)\)
\(=\left(1.2+2.3+3.4+...+50.51\right)-\left(1+2+3+...+50\right)\)
\(=\frac{1.2.3+2.3.\left(4-1\right)+...+50.51.\left(52-49\right)}{3}-1275\)
\(=\frac{1.2.3-1.2.3+2.3.4-...-49.50.51+50.51.52}{3}-1275\)
\(=44200-1275\)
\(=42925\)
Thay vào A ta được:
\(A=127500-42925=84575\)
Mình xin lỗi mình ấn nhầm bạn Linh đúng nhé bạn kia sai rồi
A=1/1.101+1/2.102+1/3.103+...+1/10.110
tính A