tìm số nguyên dương n lớn nhất sao cho n2+2n+1 phần n+23 có giá trị nguyên
Tìm số nguyên dương lớn nhất sao cho n2+2n+1 / n+23 có giá trị nguyên
Tìm số nguyên dương lớn nhất sao cho n^2+2n+1/n+23 có giá trị nguyên.
Giúp mk có cả lời giải nhé! Mk sẽ tick!!~~
Mk lam tu luc nay gio matu nhien no biến mất .
Bang461 nhe
tìm số nguyên dương n lớn nhất sao cho \(\frac{n^2+2n+1}{n+23}\) có giá trị nguyên
1) Cho A= 4n+1/2n+3. Tìm n thuộc số nguyên để:
a) A là 1 số nguyên của A
b) Tìm giá trị lớn nhất và nhỏ nhất của A
2) Tìm số nguyên dương n nhỏ nhất sao cho ta có cách thêm n chữ số sau số đó để số chia hết cho 39
3) Tìm giá trị lớn nhất của thương 1 số tự nhiên có 3 chữ số và tổng các chữ số của nó
4) Tìm giá trị nhỏ nhất của hiệu giữa 1 số tự nhiên có 2 chữ số và tổng ấc chữ số của nó
Cho phân số A= 2n-1/ n-3
Tìm số nguyên n để A có giá trị nguyênTìm số nguyên n để A có giá trị lớn nhấtCho p/s A= 2n-1/n-3
A) tìm số nguyên n để A có giá trị nguyên
B) tìm số nguyên n để A có giá trị lớn nhất
a) \(A=\frac{2n-1}{n-3}=\frac{2\left(n-3\right)+5}{n-3}=2+\frac{5}{n-3}\)
Để A nguyên thì \(\frac{5}{n-3}\) phải nguyên
=> n-3 \(\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{4;2;8;-2\right\}\)
Tìm n nguyên dương lớn nhất sao cho:
\(\frac{n^2+2n+1}{n+23}\)
Ta có :
\(\frac{n^2+2n+1}{n+23}\in Z\Rightarrow n^2+2n+1⋮n+23\)
\(\Rightarrow n^2+23n-\left(21n-1\right)⋮n+23\)
\(\Rightarrow n\left(n+23\right)-\left(21n-1\right)⋮n+23\)
Mà \(n\left(n+23\right)⋮n+23\)
\(\Rightarrow21n-1⋮n+23\)
\(\Rightarrow21n+483-484⋮n+23\)
\(\Rightarrow21\left(n+23\right)-484⋮n+23\)
,Mà \(21\left(n+23\right)⋮n+23\)
\(\Rightarrow484⋮n+23\)
Vậy n lớn nhất \(\Leftrightarrow n+23=484\)
\(\Leftrightarrow n=461\)
Cho phân số \(A=\frac{2n-1}{n-3}\)
a) Tìm số nguyên n để A có giá trị nguyên.
b) Tìm số nguyên n để A có giá trị lớn nhất.
a) A \(=\frac{2n-1}{n-3}=\frac{2n-6}{n-3}+\frac{5}{n-3}\) nguyên
<=> n - 3 thuộc Ư(5) = {-5; -1; 1; 5}
<=> n thuộc {-2; 2; 4; 8}
b) A lớn nhất <=> \(\frac{5}{n-3}\) lớn nhất <=> n - 3 là số nguyên dương nhỏ nhất
<=> n - 3 = 1 <=> n = 4