Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Việt Cường
Xem chi tiết
HT2k02
4 tháng 4 2021 lúc 20:06

\(A=5+4^2+...+4^{2021}\\ A=4^0+4^1+...+4^{2021}\\ 4A=4^1+4^2+...+4^{2022}\\ 4A-A=\left(4^1+4^2+...+4^{2022}\right)-\left(4^0+4^1+...+4^{2021}\right)\\ 3A=4^{2022}-1\\ 3A+1=4^{2022}⋮4^{2021}\)

Long
Xem chi tiết
Lấp La Lấp Lánh
12 tháng 11 2021 lúc 9:21

\(A=\left(3^2+3^3\right)+3^2\left(3^2+3^3\right)+...+3^{2018}\left(3^2+3^3\right)\)

\(=36+3^2.36+...+3^{2018}.36=36\left(1+3^2+...+3^{2018}\right)⋮36\)

кαвαиє ѕнιяσ
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 11 2021 lúc 8:45

\(A=\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{2020}+3^{2021}\right)\\ A=\left(3^2+3^3\right)+3^2\left(3^2+3^3\right)+...+3^{2018}\left(3^2+3^3\right)\\ A=\left(3^2+3^3\right)\left(1+3^2+...+3^{2018}\right)\\ A=36\left(1+3^2+...+3^{2018}\right)⋮36\)

Hà Anh Nguyễn
Xem chi tiết
Kiều Vũ Linh
4 tháng 11 2023 lúc 10:56

\(C=4+4^2+4^3+...+4^{2021}+4^{2022}\)

\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2021}+4^{2022}\right)\)

\(=4.\left(1+4\right)+4^3.\left(1+4\right)+...+4^{2021}.\left(1+4\right)\)

\(=4.5+4^3.5+...+4^{2021}.5\)

\(=5.\left(4+4^3+...+4^{2021}\right)⋮5\)

Vậy \(C⋮5\)

Thanh Phong Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 16:52

B/A

\(=\dfrac{1+\dfrac{2020}{2}+1+\dfrac{2019}{3}+...+1+\dfrac{1}{2021}+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}\)

\(=\dfrac{2022\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}=2022\)

Nguyễn Văn Vi Duy Hưng
Xem chi tiết
Akai Haruma
29 tháng 6 2023 lúc 19:02

Lời giải:

Xét $A=4^{2021}+4^{2020}+...+4^2+4+1$

$4A=4^{2022}+4^{2021}+...+4^3+4^2+4$
$\Rightarrow 4A-A=4^{2022}-1$

$\Rightarrow 3A=4^{2022}-1$

$\Rightarrow M=75A+25=25(4^{2022}-1)+25=25.4^{2022}=100.4^{2021}\vdots 100$

Ta có đpcm.

nguyen thi huong giang
Xem chi tiết
Nguyễn Thị Nga
Xem chi tiết
Võ Ngọc Phương
14 tháng 9 2023 lúc 19:44

Ta có: ( Sửa đề )

\(A=4+4^2+4^3+...+4^{2021}+4^{2022}\)

\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2021}+4^{2022}\right)\)

\(A=20+4^2.\left(4+4^2\right)+...+4^{2020}.\left(4+4^2\right)\)

\(A=20+4^2.20+...+4^{2020}.20\)

\(A=20.\left(1+4^2+...+4^{2020}\right)\)

Vì \(20⋮20\) nên \(20.\left(1+4^2+...+4^{2020}\right)\)

Vậy \(A⋮20\)

\(#WendyDang\)

 

Dương Q. Trọng
Xem chi tiết
Kiều Vũ Linh
1 tháng 11 2021 lúc 13:05

Em xem lại đề nhé! Có xuất hiện dấu + không? Hay chỉ là dấu x

Bà ngoại nghèo khó
1 tháng 11 2021 lúc 13:15

A= 4+4\(^2\)+4\(^3\)+4\(^4\)+...+4\(^{2021}\)+4\(^{2022}\)⋮5

A=(4+4\(^2\))+(4\(^3\)+4\(^4\))+...+(4\(^{2021}\)+4\(^{2022}\))⋮5

A=4(1+4)+4\(^2\)(1+4)+...+4\(^{2021}\)(1+4)⋮5

A=4.5+4\(^2\).5+...+4\(^{2021}\).5⋮5

A=(4+4\(^2\)+...+4\(^{2021}\)).5⋮5

Vậy A⋮5

Kiều Vũ Linh
1 tháng 11 2021 lúc 13:24

\(A=4+4^2+4^3+4^4+...+4^{2021}+4^{2022}\)

\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2021}+4^{2022}\right)\)

\(=4.\left(1+4\right)+4^3.\left(1+4\right)+...+4^{2021}.\left(1+4\right)\)

\(=4.5+4^3.5+...+4^{2021}.5\)

\(=5.\left(4+4^3+...+4^{2021}\right)⋮5\)

Vậy \(A⋮5\)