chứng minh rằng đa thức sau không có nghiệm: P(x)=x2+4x+10
chứng tỏ rằng đa thức sau không có nghiệm: A(x) = x2 - 4x 7
Tìm nghiệm của đa thức sau: P (x) = x4 x3 x 1
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
Bài 10*. Chứng minh rằng các đa thức sau đây không có nghiệm:
a) f(x) = x2 + 4x + 10 c) f(x) = 5x4 +
x2 +
b) g(x) = x2 - 2x + 2017 d) g(x) = 4x2004 + x2018 + 1
`a,`
`f(x)=x^2+4x+10`
\(\text{Vì }\)\(x^2\ge0\left(\forall x\right)\)
`->`\(x^2+4x+10\ge10>0\left(\forall\text{ x}\right)\)
`->` Đa thức không có nghiệm (vô nghiệm).
`c,`
`f(x)=5x^4+x^2+` gì nữa bạn nhỉ? Mình đặt vd là 1 đi nha :v.
Vì \(x^4\ge0\text{ }\forall\text{ }x\rightarrow5x^4\ge0\text{ }\forall\text{ }x\)
\(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(5x^4+x^2+1\ge1>0\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
`b,`
`g(x)=x^2-2x+2017`
Vì \(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(x^2-2x+2017\ge2017\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
`d,`
`g(x)=4x^2004+x^2018+1`
Vì \(x^{2004}\ge0\text{ }\forall\text{ }x\rightarrow4x^{2004}\ge0\text{ }\forall\text{ }x\)
\(x^{2018}\ge0\text{ }\forall\text{ }x\)
`->`\(4x^{2004}+x^{2018}+1\ge1>0\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
chứng tỏ rằng đa thức sau không có nghiệm: A(x) = x2 - 4x 7Tìm nghiệm của đa thức sau: P (x) = x4 x3 x 1
giải giùm đi mình tick cho
x4+x3+x+1 = x3. (x+1) + (x+1) = (x3 + 1)(x+1) = (x+1)2.(x2 - x +1) = 0
=> x + 1 = 0 => x = -1
Vì x2 - x + 1 = (x2 - 2.x .1/2 + 1/4) + 3/4 = (x - 1/2)2 + 3/4 >0 + 3/4 = 3/4
Vậy đa thức trên có nghiệm là x = -1
Chứng minh đa thức sau không có nghiệm
x2 + 4x + 10
nghiệm của đa thức \(x^2+4x+10\)
=>\(x^2+4x+10\)=0
=>\(x^2+4x\)=0-10
=>\(x^2+4x=-10\)
=>\(x^2=-10:4\)
=>\(x^2=-\frac{2}{5}\)
=>x=2/5 hoặc -2/5
(không biết phải không nhe)
Chứng minh rằng đa thức: f(x)=4x^2+4x+5 không có nghiệm.
Ta có:4x^2+4x+5=4x^2+2x+2x+4+1=4x.(x+2)+2.(x+2)=(x+2).(x+2)+1=(X+2)^2
ví (x+2)^2>0,1\(\ge\)1\(\Rightarrow\)(x+2)^2+1\(\ge\)1\(\Rightarrow\)(x+2)^2>0
chứng minh rằng các đa thức sau không có nghiệm :
a) x^2 + 4x+ 5
b) -x^2-x-1
a) vì x2 > 0
=> x2 + 4x + 5 lớn hơn hoặc bằng 5 > 0 với x thuộc R
=> đa thức trên ko có nghiệm
b) vì x2 < 0
=> -x2 - x - 1 nhỏ hơn hoặc bằng -1 < 0
=> đa thức trên ko có nghiệm
a, =x2 + 2x + 2x + 4 +1
=x(x + 2) + 2(x + 2) +1
=(x + 2)(x + 2) + 1= (x + 2)2 +1 >= 1 > 0
=>x2 + 4x + 5 ko có nghiệm
b, =x2 - x - 1
=x2 - 1/2x - 1/2x - 1/4 - 1/3
=x(x - 1/2) - 1/2(x - 1/2) - 3/4
=(x - 1/2)(x - 1/2) - 3/4
=(x - 1/2)2 - 3/4 >= -3/4 \(\ne\) 0
=> -x2 - x - 1 ko có nghiệm
a) đa thức không có nghiệm khi \(\ne0\)
=>x2\(\ge0\)
=>x2+4x+5 \(>0\)
=> đa thức không có nghiệm
b)
ta có : -x2-x-1 = -1x2-x-1
=>x2\(\ge0\)
=> -x2-x-1 >0
=> đa thức không có nghiệm
chứng minh rằng các đa thức sau không có nghiệm :
a) x^2 + 4x+ 5
b) -x^2-x-1
chứng minh rằng các đa thức sau không có nghiệm :
a) x^2 + 4x+ 5
b) -x^2-x-1
a) đa thức chỉ có nghiệm khi x khác 0
=> x2 \(\ge0\)
=>x2+4x+5 >0
=> đa thức không có nghiệm
b) -x2-x-1=-1x2-x-1
=>x2 hoặc x \(\ge0\)
=> -x2-x-1 >0
=> đa thức không có nghiệm
chứng minh rằng đa thức P(x)=xmũ2+4x+5 không có nghiệm