Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Đoàn
Xem chi tiết
Thanh Tùng DZ
1 tháng 6 2018 lúc 15:16

Câu hỏi của vuighe123_oribe - Toán lớp 8 - Học toán với OnlineMath

bạn tham khảo ở trên nhé

Nguyễn Thị Ngọc Ly
Xem chi tiết
Nguyễn Thị Ngọc Ly
Xem chi tiết
Hoàng Phúc
23 tháng 12 2016 lúc 21:52

đặt phép chia ,để phép chia là phép chia hết thì dư=0 .....=>m=-3

hoặc có thể dễ nhận thấy m=-3 sẽ có hđt x^3+y^3+z^3-3xyz =(x+y+z)(x^2+y^2+z^2-xy-yz-zx) chia hết cho (x+y+z)

Ngọc Tân Đoàn
10 tháng 8 2019 lúc 17:06
Quẵng đường viên bi A dơi trong 4s là: \(S_{A\left(4s\right)}=\frac{1}{2}\cdot10\cdot4^2=80\left(m\right)\)Vì sau khi bi A rơi được 4 giây thì khoảng cách giữa hai viên bi là 35m nên quãng đường bi B dơi là: \(S_{B\left(4-\Delta t\right)}=80-35=45\left(m\right)\)Suy ra: \(S_{B\left(4-\Delta t\right)}=\frac{1}{2}\cdot10\cdot\left(4-\Delta t\right)^2=45\\ \Rightarrow\left(4-\Delta t\right)^2=9\\ \Rightarrow4-\Delta t=3\Rightarrow\Delta t=1\left(s\right)\)
___Vương Tuấn Khải___
Xem chi tiết
Akai Haruma
4 tháng 7 2018 lúc 22:25

Lời giải:

Ta có:

\(x^3+y^3+z^3+mxyz=(x+y+z)^3-3(x+y)(y+z)(x+z)+mxyz\)

\(=(x+y+z)^3-3[xy(x+y)+yz(y+z)+xz(x+z)+2xyz]+mxyz\)

\(=(x+y+z)^3-3[xy(x+y+z)+yz(x+y+z)+xz(x+y+z)-xyz]+mxyz\)

\(=(x+y+z)^3-3(x+y+z)(xy+yz+xz)+3xyz+mxyz\)

\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)+(m+3)xyz\)

Như vậy, để \(x^3+y^3+z^3+mxyz\vdots x+y+z, \forall x,y,z\) thì \((m+3)xyz\vdots x+y+z, \forall x,y,z\)

\(\Rightarrow m+3=0\Rightarrow m=-3\)

Phùng Khánh Linh
5 tháng 7 2018 lúc 10:08

Cách khác :

Đặt : \(F=x^3+y^3+z^3+mxyz\)

Xem F là một đa thức theo x , kí hiệu : \(F\left(x\right)\)

Vì : \(\left(x+y+z\right)=x-\left(-y-z\right)\)\(F\)\(\left(x+y+z\right)\)

\(F\left(x\right)\text{⋮}\left[x-\left(-y-z\right)\right]\)

\(F\left(-y-z\right)=0\)\(\left(-y-z\right)^3+y^3+z^3+m\left(-y-z\right)yz=0\)

\(-3yz\left(y+z\right)+m\left(-y-z\right)yz=0\)

\(-3yz\left(y+z\right)-m\left(y+z\right)yz\)

\(-yz\left(y+z\right)\left(m+3\right)=0\)

Đẳng thức trên đúng ∀y,z ⇔ m = - 3

Nam Review
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 12 2021 lúc 22:11

\(M⋮N\\ \Rightarrow3x^3+4x^2-7x+5⋮x-3\\ \Rightarrow3x^3-9x^2+13x^2-39x+32x-96+101⋮x-3\\ \Rightarrow3x^2\left(x-3\right)+13x\left(x-3\right)+32\left(x-3\right)+101⋮x-3\\ \Rightarrow x-3\inƯ\left(101\right)=\left\{-101;-1;1;101\right\}\\ \Rightarrow x\in\left\{-98;2;4;104\right\}\)

Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 22:19

\(x\in\left\{-98;2;4;104\right\}\)

Trần Như Ngọc
Xem chi tiết
KhảTâm
21 tháng 6 2019 lúc 7:39

Xem F là một đa thức theo x, kí hiệu F(x).

Vì (x + y+ z)= x - (-y - z) và F\(⋮\)(x + y + z) nên F(x) \(⋮\)\([x-\left(-y-z\right)]\)

Suy ra F (-y - z) = 0 \(\Leftrightarrow\)\(\left(-y-z\right)^3+y^3+z^3+m\left(-y-z\right)yz=0\)

\(\Leftrightarrow-3yz\left(y+z\right)+m\left(-y-z\right)yz=0\)\(\Leftrightarrow yz\left(y+z\right)\left(3+m\right)=0\)

Đẳng thức trên đúng \(\forall y,z\Leftrightarrow m=-3\)

Incursion_03
21 tháng 6 2019 lúc 7:57

\(F=x^3+y^3+z^3+mxyz\)

    \(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz+mxyz\)

    \(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+xyz\left(m+3\right)\)

\(F⋮\left(x+y+z\right)\)mà \(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)⋮x+y+z\)

Nên \(xyz\left(m+3\right)⋮x+y+z\forall x;y;z\)

Như vậy m + 3 = 0 <=> m = -3

Nguyễn Khang
21 tháng 6 2019 lúc 8:26

Toán nâng cao 7 mà?

ranpo
Xem chi tiết
Lê Kiều Uyên
Xem chi tiết
Võ Huỳnh Minh Chương
Xem chi tiết
Gia Linh Hoàng
8 tháng 1 2017 lúc 21:54

m=-3 có trong mấy cái hàng đẳng thức đáng nhớ