với x,y,z>0 cmr với x,y,z>0 cmr ( x^2 + 5 )( y^2 + 5 )( z^2 + 5 ) >= 6( x + y + z + 3)^2
Cho x+y+z=0.CMR: 5(x^3+y^3+z^3)(x^2+y^2+z^2)=6(x^5+y^5+z^5)
Cho x+y+z=0.
CMR \(5(x^3+y^3+z^3)(x^2+y^2+z^2)=6(x^5+y^5+z^5)\)
Ta có:
\(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)
\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=-z^3\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
\(\Rightarrow5\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)=15xyz\left(x^2+y^2+z^2\right)\)
Mặt khác:
\(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Rightarrow x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5=-z^5\)
\(\Rightarrow x^5+y^5+z^5+5xy\left(x^3+2x^2y+2xy^2+y^3\right)=0\)
\(\Rightarrow x^5+y^5+z^5+\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]=0\)
\(\Rightarrow x^5+y^5+z^5+\left(x+y\right)\left(x^2+xy+y^2\right)=0\)
\(\Rightarrow x^5+y^5+z^5-5xyz\left(x^2+xy+y^2\right)=0\)
\(\Rightarrow2\left(x^5+y^5+z^5\right)-5xyz\left[\left(x^2+2xy+y^2\right)+x^2+y^2\right]=0\)
\(\Rightarrow2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
Khi đó:\(6\left(x^5+y^5+z^5\right)=15xyz\left(x^2+y^2+z^2\right)=VT\)
\(\Rightarrowđpcm\)
zZz Cool Kid zZz mình chưa hiểu lắm
Bn giải rõ ra dc ko
1; phân tích đa thức thành nhâ tử
(x+y+z)^3-(x+y)^3-(y+z)^3-(z+x)^3
2; cho x+y+z=0. CMR: 2*(x^5+y^5+z^5)=5*x*y*z*(x^2+y^2+z^2)
3;CMR a=y^4+(x+y)*(x+2*y)*(x+3*y)*(x+4*y).
AI LÀM ĐƯỢC MÌNH CHO 5 LIKE
CMR với mọi x,y,z>0 thì xyz+2(x^2+y^2+z^2)+8 >= 5(x+y+z)
. Bài 1:Tìm x
a; x.(x-4)+x-4=0
b; x.(x-4)=2x-8
c; (2x+3).(x-1)+(2x-3).(1-x)=0
d; (x+1).(6x^2+2x)+(x-1).(6x^2+2x)=0
. Bài 2:Tính giá trị biểu thức
a; A=x.(2y-z)-2y.(z-2y) với x=2,y=1/2,z= -1
b; B=x.(y-x)+y.(x-y) với x=13,y=3
c; C=x.(x+y)-5x-5y với x=33/5,y=12/5
. Bài 3
a; CMR: n^2.(n+1)+2n.(n+1) chia hết cho 6 với mọi n thuộc Z
b; CMR: 24^n+1 - 24^n chia hết cho 23 với mọi n thuộc N
c; CMR: (2^n-1)^2 - 2^n+1 chia hết cho 8 với mọi n thuộc Z
. Bài 4: CMR: m^3 - m chia hết cho 6 với mọi m thuộc Z
bn ... ơi...mik ...bỏ...cuộc ...hu...hu
. Huhu T^T mong sẽ có ai đó giúp mình "((
Cho x+y+z=0. CMR 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)
x + y + z = 0
⇒x3+y3+z3=3xyz⇒x3+y3+z3=3xyz
⇒(x3+y3+z3)(x2+y2+z2)=3xyz(x2+y2+z2)⇒(x3+y3+z3)(x2+y2+z2)=3xyz(x2+y2+z2)
⇒x5+y5+z5+x2y2(x+y)+y2z2(y+z)+z2x2(z+x)=3xyz(x2+y2+z2)⇒x5+y5+z5+x2y2(x+y)+y2z2(y+z)+z2x2(z+x)=3xyz(x2+y2+z2)
⇒x5+y5+z5−xyz(xy+yx+zx)=3xyz(x2+y2+z2)⇒x5+y5+z5−xyz(xy+yx+zx)=3xyz(x2+y2+z2)
⇒2(x5+y5+z5)=5xyz(x2+y2+z2)
cho x + y+z=0. cmr 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)
cho a+b+c=0;a^2+b^2+c^2=0;a^3+b^3+c^3=0. tính a+b^2+c^3
CMR: nếu x+y+z=0 thì 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)
Vì x+y+z=0
=>x+y=-z =>(x+y)^5=-z^5
hay x^5+y^5+5(x^4y+xy^4+2x³y²+2x²y³+)=-z^5
<=>x^5+y^5+z^5+5xy(x³+y³+2x²y+2x²y)=0
<=>x5+y^5+z^5+5xy(x+y)(x²-xy+y²+2xy)=0
<=>x^5+y^5+z^5-5xyz(x²+xy+y²)=0
<=>x^5+y^5+z^5=5xyz(x²+xy+y²)
<=>2(x^5+y^5+z^5)=5xyz(2x²+2xy+2y²)
<=>2(x^5+y^5+z^5)=5xyz[x²+y²+(x+y)²]
<=>2(x^5+y^5+z^5)=5xyz(x³+y²+z²)
Cho x+y+z = 0. CMR :
a) 5( x3 + y3 + z3 ) (x2 + y2 + z2) = 6(x5 + y5 + z5 )
b) 2( x5 + y5 + z5 ) = 5xyz( x2 + y2 + z2 )
Lời giải:
Khai triển:
\(\text{VT}=5(x^5+y^5+z^5)+5\underbrace{[x^3(y^2+z^2)+y^3(x^2+z^2)+z^3(x^2+y^2)]}_{M}\)
Xét riêng $M$ kết hợp với điều kiện $x+y+z=0$ ta có
\(M=x^2y^2(x+y)+y^2z^2(y+z)+z^2x^2(x+z)=-(x^2y^2z+y^2z^2x+z^2x^2y)\)
\(\Leftrightarrow M=-xyz(xy+yz+xz)=\frac{-1}{2}xyz[(x+y+z)^2-(x^2+y^2+z^2)]=\frac{1}{2}xyz(x^2+y^2+z^2)\)
Ta biết đến một hằng thức rất quen thuộc: Nếu $x+y+z=0$ thì \(x^3+y^3+z^3=3xyz\)
Cách chứng minh: \(x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)=0-3(-x)(-y)(-z)=3xyz\)
Do đó \(M=\frac{1}{6}(x^3+y^3+z^3)(x^2+y^2+z^2)=\frac{\text{VT}}{30}\)
\(\Rightarrow \text{VT}=5(x^5+y^5+z^5)+5M=5(x^5+y^5+z^5)+\frac{\text{VT}}{6}\)
\(\Rightarrow \text{VT}=6(x^5+y^5+z^5)\) (đpcm)
b) Theo phần a)
\(\left\{\begin{matrix} M=\frac{1}{2}xyz(x^2+y^2+z^2)\\ M=\frac{5(x^2+y^2+z^2)(x^3+y^3+z^3)}{30}\end{matrix}\right.\Rightarrow \frac{5(x^2+y^2+z^2)(x^3+y^3+z^3)}{30}=\frac{xyz(x^2+y^2+z^2)}{2}\)
Mà \(5(x^2+y^2+z^2)(x^3+y^3+z^3)=6(x^5+y^5+z^5)\Rightarrow \frac{6(x^5+y^5+z^5)}{30}=\frac{xyz(x^2+y^2+z^2)}{2}\)
\(\Leftrightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)\) (đpcm)
b)Vì x+y+z=0
=>x+y=-z =>(x+y)^5=-z^5
hay x^5+y^5+5(x^4y+xy^4+2x³y²+2x²y³+)=-z^5
<=>x^5+y^5+z^5+5xy(x³+y³+2x²y+2x²y)=0
<=>x5+y^5+z^5+5xy(x+y)(x²-xy+y²+2xy)=0
<=>x^5+y^5+z^5-5xyz(x²+xy+y²)=0
<=>x^5+y^5+z^5=5xyz(x²+xy+y²)
<=>2(x^5+y^5+z^5)=5xyz(2x²+2xy+2y²)
<=>2(x^5+y^5+z^5)=5xyz[x²+y²+(x+y)²]
<=>2(x^5+y^5+z^5)=5xyz(x³+y²+z²)