2x5 x (3x2+4)
Cho hai đa thức P ( x ) = − 6 x 5 − 4 x 4 + 3 x 2 − 2 x ; Q ( x ) = 2 x 5 − 4 x 4 − 2 x 3 + 2 x 2 − x − 3
Tính 2P(x) + Q(x)
A. - 10 x 5 - 4 x 4 - 2 x 3 + 8 x 2 - 5 x - 3
B. - 10 x 5 - 12 x 4 - 2 x 3 + 8 x 2 - 5 x - 3
C. - 14 x 5 - 12 x 4 - 2 x 3 + 8 x 2 - 3 x - 3
D. - 10 x 5 - 12 x 4 + 8 x 2 - 5 x - 3
Ta có
2 ⋅ P ( x ) = 2 ⋅ − 6 x 5 − 4 x 4 + 3 x 2 − 2 x = − 12 x 5 − 8 x 4 + 6 x 2 − 4 x Khi dó 2 P ( x ) + Q ( x ) = − 12 x 5 − 8 x 4 + 6 x 2 − 4 x + 2 x 5 − 4 x 4 − 2 x 3 + 2 x 2 − x − 3
= - 12 x 5 - 8 x 4 + 6 x 2 - 4 x + 2 x 5 - 4 x 4 - 2 x 3 + 2 x 2 - x - 3 = - 12 x 5 + 2 x 5 + - 8 x 4 - 4 x 4 - 2 x 3 + 6 x 2 + 2 x 2 + ( - 4 x - x ) - 3 = - 10 x 5 - 12 x 4 - 2 x 3 + 8 x 2 - 5 x - 3
Chọn đáp án B
Cho hai đa thức P ( x ) = − 6 x 5 − 4 x 4 + 3 x 2 − 2 x ; Q ( x ) = 2 x 5 − 4 x 4 − 2 x 3 + 2 x 2 − x − 3
Gọi M(x) = P(x) - Q(x). Tính M(-1)
A. 11
B. -10
C. -11
D. 10
Ta có
M ( x ) = P ( x ) − Q ( x ) = − 6 x 5 − 4 x 4 + 3 x 2 − 2 x − 2 x 5 − 4 x 4 − 2 x 3 + 2 x 2 − x − 3 = − 8 x 5 + 2 x 3 + x 2 − x + 3 Có M ( − 1 ) = − 8. ( − 1 ) 5 + 2 ⋅ ( − 1 ) 3 + ( − 1 ) 2 − ( − 1 ) + 3 = 11
Chọn đáp án A
(-2x5 + 3x2 - 4x3): 2x2
bạn để câu hỏi thế thì ai biết mà giúp
Bài 4. Tính tổng và hiệu của các đa thức sau:
a) P(x) = 5x4 + 3x2 - 3x5 + 2x - x2 - 4 +2x5 và Q(x) = x5 - 4x4 + 7x - 2 + x2 - x3 + 3x4 - 2x2
b) H (x) = ( 3x5 - 2x3 + 8x + 9) - ( 3x5 - x4 + 1 - x2 + 7x) và R( x) = x4 + 7x3 - 4 - 4x ( x2 + 1) + 6x
ai giúp mình với
`@` `\text {Ans}`
`\downarrow`
`a)`
Thu gọn:
`P(x)=`\(5x^4 + 3x^2 - 3x^5 + 2x - x^2 - 4 +2x^5\)
`= (-3x^5 + 2x^5) + 5x^4 + (3x^2 - x^2) + 2x - 4`
`= -x^5 + 5x^4 + 2x^2 + 2x - 4`
`Q(x) =`\(x^5 - 4x^4 + 7x - 2 + x^2 - x^3 + 3x^4 - 2x^2\)
`= x^5 + (-4x^4 + 3x^4) - x^3 + (x^2 - 2x^2) + 7x - 2`
`= x^5 - x^4 - x^3 - x^2 + 7x - 2`
`@` Tổng:
`P(x)+Q(x)=`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) + (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)
`= -x^5 + 5x^4 + 2x^2 + 2x - 4 + x^5 - x^4 - x^3 - x^2 + 7x - 2`
`= (-x^5 + x^5) - x^3 + (5x^4 - x^4) + (2x^2 - x^2) + (2x + 7x) + (-4-2)`
`= 4x^4 - x^3 + x^2 + 9x - 6`
`@` Hiệu:
`P(x) - Q(x) =`\((-x^5 + 5x^4 + 2x^2 + 2x - 4) - (x^5 - x^4 - x^3 - x^2 + 7x - 2)\)
`= -x^5 + 5x^4 + 2x^2 + 2x - 4 - x^5 + x^4 + x^3 + x^2 - 7x + 2`
`= (-x^5 - x^5) + (5x^4 + x^4) + x^3 + (2x^2 + x^2) + (2x - 7x) + (-4+2)`
`= -2x^5 + 6x^4 + x^3 + 3x^2 - 5x - 2`
`b)`
`@` Thu gọn:
\(H (x) = ( 3x^5 - 2x^3 + 8x + 9) - ( 3x^5 - x^4 + 1 - x^2 + 7x)\)
`= 3x^5 - 2x^3 + 8x + 9 - 3x^5 + x^4 - 1 + x^2 - 7x`
`= (3x^5 - 3x^5) + x^4 - 2x^3 - x^2 + (8x + 7x) + (9+1)`
`= x^4 - 2x^3 - x^2 + 15x + 10`
\(R( x) = x^4 + 7x^3 - 4 - 4x ( x^2 + 1) + 6x\)
`= x^4 + 7x^3 - 4 - 4x^3 - 4x + 6x`
`= x^4 + (7x^3 - 4x^3) + (-4x + 6x) - 4`
`= x^4 + 3x^3 + 2x - 4`
`@` Tổng:
`H(x)+R(x)=` \((x^4 - 2x^3 - x^2 + 15x + 10)+(x^4 + 3x^3 + 2x - 4)\)
`= x^4 - 2x^3 - x^2 + 15x + 10+x^4 + 3x^3 + 2x - 4`
`= (x^4 + x^4) + (-2x^3 + 3x^3) - x^2 + (15x + 2x) + (10-4)`
`= 2x^4 + x^3 - x^2 + 17x + 6`
`@` Hiệu:
`H(x) - R(x) =`\((x^4 - 2x^3 - x^2 + 15x + 10)-(x^4 + 3x^3 + 2x - 4)\)
`=x^4 - 2x^3 - x^2 + 15x + 10-x^4 - 3x^3 - 2x + 4`
`= (x^4 - x^4) + (-2x^3 - 3x^3) - x^2 + (15x - 2x) + (10+4)`
`= -5x^3 - x^2 + 13x + 14`
`@` `\text {# Kaizuu lv u.}`
bài 1:
a) (2x3 - x2 + 5x) : x b) (3x4 - 2x3 + x2) : (-2x) c) (-2x5 + 3x2 - 4x3) : 2x2
d) (x3 - 2x2y + 3xy2) : \(\left(-\dfrac{1}{2}x\right)\) e) [ 3(x-y)5 - 2(x-y)4 + 3(x-y)2] : 5(x-y)2
a) (3x5 y2 +4x3y3-5x2y4 ) :2x2y2
a) \(\left(2x^3-x^2+5x\right):x\)
\(=\dfrac{2x^3-x^2+5x}{x}\)
\(=\dfrac{x\left(2x^2-x+5\right)}{x}\)
\(=2x^2-x+5\)
b) \(\left(3x^4-2x^3+x^2\right):\left(-2x\right)\)
\(=\dfrac{3x^4-2x^3+x^2}{-2x}\)
\(=\dfrac{2x\left(\dfrac{3}{2}x^3-x^2+\dfrac{1}{2}x\right)}{-2x}\)
\(=-\left(\dfrac{3}{2}x^3-x^2+\dfrac{1}{2}x\right)\)
\(=-\dfrac{3}{2}x^3+x^2-\dfrac{1}{2}x\)
c) \(\left(-2x^5+3x^2-4x^3\right):2x^2\)
\(=\dfrac{-2x^5+3x^2-4x^3}{2x^2}\)
\(=\dfrac{2x^2\left(-x^3+\dfrac{3}{2}-2x\right)}{2x^2}\)
\(=-x^3-2x+\dfrac{3}{2}\)
d) \(\left(x^3-2x^2y+3xy^2\right):\left(-\dfrac{1}{2}x\right)\)
\(=\dfrac{x^3-2x^2y+3xy^2}{-\dfrac{1}{2}x}\)
\(=\dfrac{\dfrac{1}{2}x\left(2x^2-4xy+6y^2\right)}{-\dfrac{1}{2}x}\)
\(=-\left(2x^2-4xy+6y^2\right)\)
\(=-2x^2+4xy-6y^2\)
e) \(\left[3\left(x-y\right)^5-2\left(x-y\right)^4+3\left(x-y\right)^2\right]:5\left(x-y\right)^2\)
\(=\dfrac{3\left(x-y\right)^5-2\left(x-y\right)^4+3\left(x-y\right)^2}{5\left(x-y\right)^2}\)
\(=\dfrac{5\left(x-y\right)^2\left[\dfrac{3}{5}\left(x-y\right)^3-\dfrac{2}{5}\left(x-y\right)^2+\dfrac{3}{5}\right]}{5\left(x-y\right)^2}\)
\(=\dfrac{3}{5}\left(x-y\right)^3-\dfrac{2}{5}\left(x-y\right)^2+\dfrac{3}{5}\)
f) \(\left(3x^5y^2+4x^3y^3-5x^2y^4\right):2x^2y^2\)
\(=\dfrac{3x^5y^2+4x^3y^3-5x^2y^4}{2x^2y^2}\)
\(=\dfrac{2x^2y^2\left(\dfrac{3}{2}x^3+2xy-\dfrac{5}{2}y^2\right)}{2x^2y^2}\)
\(=\dfrac{3}{2}x^3+2xy-\dfrac{5}{2}y^2\)
Cho hai đa thức:
P(x) = 3x2 – 5 + x4 – 3x3 – x6 – 2x2 – x3
Q(x) = x3 + 2x5 – x4 + x2 – 2x3 + x –1.
Tính P(x) + Q(x) và P(x) – Q(x).
Ta đặt và thực hiện phép tính P(x) + Q(x) và P(x) – Q(x) có
Vậy: P(x) + Q(x) = – 6 + x + 2x2 – 5x3 + 2x5 – x6
P(x) – Q(x) = – 4 – x – 3x3 + 2x4 - 2x5 – x6