Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tho Nguyễn Văn
Xem chi tiết
Nguyễn Văn A
2 tháng 4 2023 lúc 10:58

\(x^2-2mx+2m-3=0\left(1\right)\)

Để phương trình (1) có nghiệm thì:

\(\Delta\ge0\Rightarrow\left(-2m\right)^2-4\left(2m-3\right)\ge0\)

\(\Leftrightarrow4m^2-8m+12\ge0\)

\(\Leftrightarrow\left(2m-2\right)^2+8\ge0\) (luôn đúng)

Vậy \(\forall m\) thì phương trình (1) có nghiệm.

Theo định lí Viete ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-3\end{matrix}\right.\)

\(\Rightarrow x_1+x_2-x_1x_2=3\)

\(\Rightarrow\left(x_1x_2-x_1-x_2+1\right)+2=0\)

\(\Rightarrow\left(x_1-1\right)\left(x_2-2\right)=-2\)

Vì x1, x2 là các số nguyên nên x1-1 , x2-1 là các ước số của -2. Lập bảng:

x1-11-12-2
x2-1-22-11
x1203-1
x2-1302

Với \(\left(x_1;x_2\right)=\left(3;0\right),\left(0;3\right)\) \(\Rightarrow\left\{{}\begin{matrix}2m=0+3=3\\2m-3=0.3=0\end{matrix}\right.\Rightarrow m=\dfrac{3}{2}\)

Với \(\left(x_1;x_2\right)=\left(2;-1\right),\left(-1;2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2m=2-1=1\\2m-3=2.\left(-1\right)=-2\end{matrix}\right.\Rightarrow m=\dfrac{1}{2}\)

Vậy m=1/2 hay m=3/2 thì pt trên có 2 nghiệm là các số nguyên.

 

Phương Đỗ
Xem chi tiết
Hoàng Thị Lan Hương
4 tháng 8 2017 lúc 9:22

1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)

Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)

a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)

Vậy \(m>\frac{1+\sqrt{13}}{2}\)

2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)

Ta thấy \(\Delta=4m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)

Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)

\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)

\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)

Vậy \(m=0\)thoă mãn yêu cầu bài toán 

  

Nguyễn Tuấn Vinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2023 lúc 23:51

a: Khi x=2 thì pt sẽlà 2^2-4m+3m-4=0

=>-m=0

=>m=0

c: Để PT có hai nghiệm tráo dấu thì 3m-4<0

=>m<4/3

d: Δ=(-2m)^2-4(3m-4)

=4m^2-12m+16

=(2m-3)^2+7>=7

=>Phương trình luôn có hai nghiệm pb

Để PT có 2 nghiệm dương thì 2m>0 và 3m-4>0

=>m>4/3

Mymy V
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 2 2023 lúc 13:20

\(\Delta'=m^2-2m+3=\left(m-1\right)^2+2>0\) ; \(\forall m\)

Vậy phương trình đã cho có 2 nghiệm phân biệt với mọi m

phúc hồng
Xem chi tiết
Đỗ Đức Duy
29 tháng 6 2023 lúc 15:37

Để phương trình x^2 - 2m^2x - 4m - 1 = 0 có nghiệm nguyên, ta cần tìm giá trị của m sao cho delta (đại diện cho biểu thức bên trong căn bậc hai trong công thức nghiệm) là một số chính phương.

Công thức tính delta là: delta = b^2 - 4ac

Áp dụng vào phương trình đã cho, ta có:
a = 1, b = -2m^2, c = -4m - 1

delta = (-2m^2)^2 - 4(1)(-4m - 1)
= 4m^4 + 16m + 4

Để delta là một số chính phương, ta cần tìm các giá trị nguyên dương của m để đạt được điều kiện này. Ta có thể thử từng giá trị nguyên dương của m và kiểm tra xem delta có là số chính phương hay không.

Ví dụ, với m = 1, ta có:
delta = 4(1)^4 + 16(1) + 4
= 4 + 16 + 4
= 24

24 không phải là số chính phương.

Tiếp tục thử một số giá trị nguyên dương khác cho m, ta có:

Với m = 2, delta = 108 (không phải số chính phương)Với m = 3, delta = 400 (không phải số chính phương)Với m = 4, delta = 1004 (không phải số chính phương)Với m = 5, delta = 2016 (không phải số chính phương)Với m = 6, delta = 3484 (không phải số chính phương)

Qua việc thử nghiệm, ta không tìm được giá trị nguyên dương của m để delta là một số chính phương. Do đó, không có giá trị của m thỏa mãn yêu cầu đề bài.

15:37  
你混過 vulnerable 他 難...
Xem chi tiết
Hồng Phúc
5 tháng 1 2021 lúc 17:22

1.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \dfrac{25}{12}\)

Hồng Phúc
5 tháng 1 2021 lúc 17:33

3.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)

\(\Leftrightarrow2< m< 11\)

đấng ys
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 12 2021 lúc 20:30

\(\left\{{}\begin{matrix}9-8m>0\\9-5m>0\end{matrix}\right.\) \(\Rightarrow m< \dfrac{9}{8}\)

Gọi a là nghiệm chung của 2 pt

\(\Rightarrow\left\{{}\begin{matrix}a^2+3a+2m=0\\a^2+6a+5m=0\end{matrix}\right.\)

\(\Rightarrow3a+3m=0\Rightarrow a=-m\)

Thay vào 2 pt ban đầu:

\(\Rightarrow\left\{{}\begin{matrix}m^2-3m+2m=0\\m^2-6m+5m=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

big bang
Xem chi tiết
Phí Đức
27 tháng 3 2021 lúc 20:10

a/ \(\Delta =(-2m)^2-4.1.(2m-3)=4m^2-8m+12=4m^2-8m+4+8=(2m-2)^2+8>0\)

\(\to\) Pt có nghiệm với mọi m

Theo Viét

\(\begin{cases}x_1+x_2=2m\\x_1x_2=2m-3\end{cases}\)

\(x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1x_2\\=(2m)^2-2.(2m-3)\\=4m^2-4m+6\)

\(\to 4m^2-4m+6=6\)

\(\leftrightarrow 4m(m-1)=0\)

\(\leftrightarrow m=0\quad or\quad m-1=0\)

\(\leftrightarrow m=0(tm)\quad or\quad m=1(tm)\)

b/ Pt có 2 nghiệm cùng dấu

\(\to\begin{cases}\Delta\ge 0\\P>0\end{cases}\)

\(\to 2m-3>0\\\leftrightarrow 2m>3\\\leftrightarrow m>\dfrac{3}{2}\)

Vì pt có 2 nghiệm với mọi m

\(\to m>\dfrac{3}{2}\)

Vậy \(m>\dfrac{3}{2}\)

Nguyễn Anh Tú
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 12 2021 lúc 9:15

\(PT\Leftrightarrow x^2+x\left(m^2-4m+4\right)+4=0\\ \Leftrightarrow x^2+x\left(m-2\right)^2+4=0\)

PT có 2 nghiệm pb \(\Leftrightarrow\left(m-2\right)^4-16>0\Leftrightarrow\left(m-2\right)^4>16\Leftrightarrow\left[{}\begin{matrix}x< 0\\x>4\end{matrix}\right.\)