tìm m để pt 6x + 2m = 2mx + 2(m khác 0) có nghiệm nguyên dương
Cho pt : \(x^2-2mx+2m-3=0\) .
Tìm m để pt có 2 nghiệm \(x_1,x_2\) là các số nguyên.
\(x^2-2mx+2m-3=0\left(1\right)\)
Để phương trình (1) có nghiệm thì:
\(\Delta\ge0\Rightarrow\left(-2m\right)^2-4\left(2m-3\right)\ge0\)
\(\Leftrightarrow4m^2-8m+12\ge0\)
\(\Leftrightarrow\left(2m-2\right)^2+8\ge0\) (luôn đúng)
Vậy \(\forall m\) thì phương trình (1) có nghiệm.
Theo định lí Viete ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-3\end{matrix}\right.\)
\(\Rightarrow x_1+x_2-x_1x_2=3\)
\(\Rightarrow\left(x_1x_2-x_1-x_2+1\right)+2=0\)
\(\Rightarrow\left(x_1-1\right)\left(x_2-2\right)=-2\)
Vì x1, x2 là các số nguyên nên x1-1 , x2-1 là các ước số của -2. Lập bảng:
x1-1 | 1 | -1 | 2 | -2 |
x2-1 | -2 | 2 | -1 | 1 |
x1 | 2 | 0 | 3 | -1 |
x2 | -1 | 3 | 0 | 2 |
Với \(\left(x_1;x_2\right)=\left(3;0\right),\left(0;3\right)\) \(\Rightarrow\left\{{}\begin{matrix}2m=0+3=3\\2m-3=0.3=0\end{matrix}\right.\Rightarrow m=\dfrac{3}{2}\)
Với \(\left(x_1;x_2\right)=\left(2;-1\right),\left(-1;2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2m=2-1=1\\2m-3=2.\left(-1\right)=-2\end{matrix}\right.\Rightarrow m=\dfrac{1}{2}\)
Vậy m=1/2 hay m=3/2 thì pt trên có 2 nghiệm là các số nguyên.
1:cho phương trình : x2 -2mx+m2-m-3=0
a, tìm m để phương trình có 2 nghiệm trái dấu
b, tìm m để phương trình có 2 nghiệm phân biệt dương
câu 2: cho pt: x2+(2m-1)x-m=0
a, chứng tỏ rằng pt luôn có 2 nghiệm với mọi m
b, Tìm m để pt có 2 nghiệm x1,x2 TM x1-x2=1
1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)
Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)
a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)
Vậy \(m>\frac{1+\sqrt{13}}{2}\)
2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)
Ta thấy \(\Delta=4m^2+1>0\forall m\)
Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m
b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)
Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)
\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)
\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)
Vậy \(m=0\)thoă mãn yêu cầu bài toán
Cho PT: \(x^2-2mx+3m-4=0\)
a, Tìm m để PT đã cho có nghiệm là 2
b, Tìm m để PT đã cho không có nghiệm là 3
c, Tìm m để PT đã cho có 2 nghiệm trái dấu
d, Tìm m để PT đã cho có 2 nghiệm dương
a: Khi x=2 thì pt sẽlà 2^2-4m+3m-4=0
=>-m=0
=>m=0
c: Để PT có hai nghiệm tráo dấu thì 3m-4<0
=>m<4/3
d: Δ=(-2m)^2-4(3m-4)
=4m^2-12m+16
=(2m-3)^2+7>=7
=>Phương trình luôn có hai nghiệm pb
Để PT có 2 nghiệm dương thì 2m>0 và 3m-4>0
=>m>4/3
Cho pt: \(x^2-2mx+2m-3=0\)
Tìm m để pt trên có 2 nghiệm phân biệt
\(\Delta'=m^2-2m+3=\left(m-1\right)^2+2>0\) ; \(\forall m\)
Vậy phương trình đã cho có 2 nghiệm phân biệt với mọi m
tìm m là số nguyên dương để pt x^2-2m^2x -4m-1=0 có nghiệm nguyên
Để phương trình x^2 - 2m^2x - 4m - 1 = 0 có nghiệm nguyên, ta cần tìm giá trị của m sao cho delta (đại diện cho biểu thức bên trong căn bậc hai trong công thức nghiệm) là một số chính phương.
Công thức tính delta là: delta = b^2 - 4ac
Áp dụng vào phương trình đã cho, ta có:
a = 1, b = -2m^2, c = -4m - 1
delta = (-2m^2)^2 - 4(1)(-4m - 1)
= 4m^4 + 16m + 4
Để delta là một số chính phương, ta cần tìm các giá trị nguyên dương của m để đạt được điều kiện này. Ta có thể thử từng giá trị nguyên dương của m và kiểm tra xem delta có là số chính phương hay không.
Ví dụ, với m = 1, ta có:
delta = 4(1)^4 + 16(1) + 4
= 4 + 16 + 4
= 24
24 không phải là số chính phương.
Tiếp tục thử một số giá trị nguyên dương khác cho m, ta có:
Với m = 2, delta = 108 (không phải số chính phương)Với m = 3, delta = 400 (không phải số chính phương)Với m = 4, delta = 1004 (không phải số chính phương)Với m = 5, delta = 2016 (không phải số chính phương)Với m = 6, delta = 3484 (không phải số chính phương)Qua việc thử nghiệm, ta không tìm được giá trị nguyên dương của m để delta là một số chính phương. Do đó, không có giá trị của m thỏa mãn yêu cầu đề bài.
15:371. Tìm m để pt : \(x^2-\left(2m-3\right)x+m^2-4=0\) có 2 nghiệm pb sao cho tổng bp 2 nghiệm <17
2. Tìm m để pt \(x^4-\left(m+1\right)x^2+m^2-m+2=0\) có 3 nghiệm pb
3. Tìm m để pt \(x^2-6x+m-2=0\) có 2 nghiệm x>0
1.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)
\(\Leftrightarrow0< m< \dfrac{25}{12}\)
3.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)
\(\Leftrightarrow2< m< 11\)
cho pt: \(x^2+3x+2m=0\)
và \(x^2+6x+5m=0\)
tìm tất cả giá trị m nguyên để 2 phương trình đều có 2 nghiệm phân biệt và giữa 2 nghiệm của pt này có đúng 1 nghiệm của pt kia
\(\left\{{}\begin{matrix}9-8m>0\\9-5m>0\end{matrix}\right.\) \(\Rightarrow m< \dfrac{9}{8}\)
Gọi a là nghiệm chung của 2 pt
\(\Rightarrow\left\{{}\begin{matrix}a^2+3a+2m=0\\a^2+6a+5m=0\end{matrix}\right.\)
\(\Rightarrow3a+3m=0\Rightarrow a=-m\)
Thay vào 2 pt ban đầu:
\(\Rightarrow\left\{{}\begin{matrix}m^2-3m+2m=0\\m^2-6m+5m=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)
cho pt x2-2mx+2m-3=0
a/Tìm m để tổng các bình phương nghiệm bằng 6
b/Tìm m để pt có 2 nghiệm cùng dấu
a/ \(\Delta =(-2m)^2-4.1.(2m-3)=4m^2-8m+12=4m^2-8m+4+8=(2m-2)^2+8>0\)
\(\to\) Pt có nghiệm với mọi m
Theo Viét
\(\begin{cases}x_1+x_2=2m\\x_1x_2=2m-3\end{cases}\)
\(x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1x_2\\=(2m)^2-2.(2m-3)\\=4m^2-4m+6\)
\(\to 4m^2-4m+6=6\)
\(\leftrightarrow 4m(m-1)=0\)
\(\leftrightarrow m=0\quad or\quad m-1=0\)
\(\leftrightarrow m=0(tm)\quad or\quad m=1(tm)\)
b/ Pt có 2 nghiệm cùng dấu
\(\to\begin{cases}\Delta\ge 0\\P>0\end{cases}\)
\(\to 2m-3>0\\\leftrightarrow 2m>3\\\leftrightarrow m>\dfrac{3}{2}\)
Vì pt có 2 nghiệm với mọi m
\(\to m>\dfrac{3}{2}\)
Vậy \(m>\dfrac{3}{2}\)
tìm m để pt x^2 - 2mx+(m^2-2m+4) x+4=0 có 2 nghiệm phân biệt 21 22 23 24 25
\(PT\Leftrightarrow x^2+x\left(m^2-4m+4\right)+4=0\\ \Leftrightarrow x^2+x\left(m-2\right)^2+4=0\)
PT có 2 nghiệm pb \(\Leftrightarrow\left(m-2\right)^4-16>0\Leftrightarrow\left(m-2\right)^4>16\Leftrightarrow\left[{}\begin{matrix}x< 0\\x>4\end{matrix}\right.\)