Cho 2 hàm số P y=x2 và d -y=mx-4 A. Vẽ P và d khi m=4 B. Tìm m để p và d tiếp xúc nhau
Cho hàm số ( P ) y=x2 và ( d ) y= 2x-m+1 Tìm m để ( P ) và ( d ) a) Tiếp xúc nhau tìm tọa độ tiếp điểm b) Cắt nhau
PTHĐGĐ là:
x^2-2x+m-1=0
Δ=(-2)^2-4(m-1)=4-4m+4=-4m+8
a: Để (P) và (d) tiếp xúc thì -4m+8=0
=>m=2
=>x^2-2x+1=0
=>x=1
=>y=1
b: Để (P) cắt (d) thì -4m+8>0
=>m<2
cho hàm số y=\(-\frac{x^2}{4}\)(P) và đường thẳng y=mx-2m-1 (d)
a, vẽ (p)
b, tìm m để (p) tiếp xúc với (d)
c, chứng tỏ rằng (d) luôn đi qua 1 điểm cố định A\(\in\)(P)
cho parabol (P):y=x2và đường thẳng (D):y=mx-m+1
a, CMR (D) và (P) luôn cóđiểm chung với mọi giá trị của m
b,với giá trị nào của m thì (D) và (P) tiếp xúc với nhau
c,vẽ trên cùng 1 hệ trục tọa độ đồ thị của hai hàm số tìm được ở câu b,
a,phương trình hoành độ giao điểm của (P) và (D) là:
x2 = mx - m + 1 (1) \(\Leftrightarrow\) x2 - mx + m - 1 = 0
\(\Delta\) = m2 - 4m +4 = (m - 20)2\(\ge\)0 với mọi giá trị của m
\(\Rightarrow\) phương trình (1) luôn luôn có nghiệm hay (D) và (P) luôn luôn có điểm chung voeí mọi giá trị của m
b,(D) tiếp xúc với (P) khi (1) có nghiệm kép hay :
\(\Delta\) = ( m - 2 )2 = 0 \(\Leftrightarrow\) m = 2
lúc đó phương trình củađường thẳng (D) là : y = 2x -1
c, tự vẽ đồ thị nha
trên đồ thị ta thấy (P) và (D) tiếp xúc nhau tại điểm A (1;1)
cho hàm số y=1/4x^2 có đồ thị là (p) và hàm số y=x+m có đồ thị là (d)
a) Vẽ đồ thị (p) của hàm số y=1/4x^2
b) Tìm giá trị của m để (d) tiếp xúc với (p). Tìm tọa độ tiếp điểm
a) vẽ bạn tự vẽ nha
b) Xét pt hoành độ giao điểm chung của (d) và (P) ta có:
\(\frac{1}{4}x^2=x+m\)
\(\Leftrightarrow x^2-4x-4m=0\left(1\right)\)
\(\Delta^,=4+4m\)
Để (d) tiếp xúc với (P) \(\Leftrightarrow\Delta^,=0\)
\(\Leftrightarrow4+4m=0\)
\(\Leftrightarrow m=-1\)
Thay m=-1 vào pt (1) ta được :
\(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\)
\(\Rightarrow y=\frac{1}{4}.2^2=1\)
Gọi tọa độ tiếp điểm của (d) tiếp xúc với (P) là A(x,y)
=> tọa độ tiếp điểm là \(A\left(2;1\right)\)
cho hàm số y=\(x^2\) (P) và y=2(m-3)x+m-9 (d), m là tham số, m∈R
a)với giá trị nào của m thì (d) là hàm số bậc nhất đồng biến
b)tìm m để đồ thị(P) và (d) tiếp xúc nhau, tìm tọa độ tiếp điểm.
c)xác định m để (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ âm.
a: Để hàm số đồng biến thì 2m-6>0
hay m>3
b: Phương trình hoành độ giao điểm là:
\(x^2-\left(2m-6\right)x-m+9=0\)
\(\text{Δ}=\left(2m-6\right)^2-4\left(-m+9\right)\)
\(=4m^2-24m+36+4m-36\)
=4m2-20m
Để (P) tiếp xúc với (d) thì 4m(m-5)=0
=>m=0 hoặc m=5
Cho hàm số y = x ² (P) và hàm số y = (m-1)x+m (D)
a) Vẽ (P)
b) Gọi \(_{x1}\),\(_{x2}\)là hoành độ giao điểm của (P) và (D). Tìm m để có \(_{x1}\)-\(_{x2}\) = 2
b: Phương trình hoành độ giao điểm là:
\(x^2-\left(m-1\right)x-m=0\)
\(\text{Δ}=\left(m-1\right)^2-4\cdot1\cdot\left(-m\right)=\left(m+1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1-x_2=2\\x_1+x_2=m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=m+1\\x_1-x_2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{1}{2}m+\dfrac{1}{2}\\x_2=\dfrac{1}{2}m+\dfrac{1}{2}-2=\dfrac{1}{2}m-\dfrac{3}{2}\end{matrix}\right.\)
Theo đề, ta có: \(x_1x_2=-m\)
\(\Leftrightarrow-m=\left(\dfrac{1}{2}m+\dfrac{1}{2}\right)\left(\dfrac{1}{2}m-\dfrac{3}{2}\right)\)
Đến đây bạn chỉ cần giải phương trình bậc hai là xong
cho parabol (P): \(y=\dfrac{1}{4}x^{2}\) và đường thẳng (d): y=mx+n. Tìm giá trị của m,n để (d) đi qua điểm A(-1;-2) và tiếp xúc với (P)
Lời giải:
Để $(d)$ đi qua $A(-1;-2)$ thì: $-2=-m+n(1)$
Để $(d)$ và $(P)$ tiếp xúc nhau thì PT hoành độ giao điểm:
$\frac{1}{4}x^2-mx-n=0$ có nghiệm duy nhất
Điều này xảy ra khi:
$\Delta=m^2+n=0(2)$
Từ $(1);(2)\Rightarrow m=1$ hoặc $m=-2$
Nếu $m=1$ thì $n=-1$
Nếu $m=-2$ thì $n=-4$
Vậy............
Tìm m để đường thẳng (d): \(y=mx+4\) tiếp xúc với đồ thị hàm số (P): \(\dfrac{-x^2}{4}\) .
(hai đồ thị hàm số tiếp xúc nhau là hai đồ thị chỉ có 1 điểm chung)
Giúp mk làm bài này với
Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{4}x^2-mx-4=0\)
\(\Leftrightarrow x^2+4mx+16=0\)
\(\Delta=\left(4m\right)^2-4\cdot1\cdot16=16m^2-64\)
Để hai đồ thị tiếp xúc với nhau thì 16m2-64=0
=>m=2 hoặc m=-2
1) Cho đường thẳng (d) y = 3/4.x - 3
a) Vẽ (d)
b) Tính diện tích tam giác được tạo thành giữa (d) và 2 trục tọa độ
c) Tính khoảng cách từ gốc O đến (d)
2) Cho (P) y = 1/2 . x và đường thẳng (d) y = a.x + b đi qua A (-1 ; 0) và tiếp xúc với (P).
3) Cho (P) : y = x2 và đường thẳng (d) y = 2x + m
a) Vẽ (P).
b) Tìm m để (P) tiếp xúc (d).
4) Cho (P) y = -x2/4 và (d) y = x + m.
a) Vẽ (P).
b) Xác định m để (P) và ( d) cắt nhau tại 2 điểm phân biệt A và B.
c) Xác định phương trình đường thẳng (d') song song với đường thẳng (d) và cắt (P) tại điểm có tung độ bằng -4.
d) Xác định phương trình đường thẳng (d") vuông góc với (d') và đi qua giao điểm của ( d') và ( P).
Mình đang cần gấp mấy bài này. Các bạn giúp mình với.