Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
cfefwe
Xem chi tiết

Bài 3

A = 1.2.3...n + 2024

Nếu n = 1 thì A = 1 + 2024

A = 2025

A = \(45^2\) (thỏa mãn)

Nếu n = 2 thì A = 1.2 + 2024

A = 2 + 2024

A = 2026

2026 : 8 = 253 dư 2 loại vì số chính phương chia 8 chỉ có thể dư 1 hoặc 4

Nếu n ≥ 3 thì A = 1.2.3..n + 2024

1.2.3...n ⋮ 3; 2024 : 3 = 674 dư 2

⇒ A ⋮ 3 dư 2 (loại vì số chính phương chia 3 chỉ có thể dư 1 hoặc không dư)

Vậy n = 1 là giá trị duy nhất thỏa mãn đề bài.


Đặng Thu Trang
Xem chi tiết
Đặng Thu Trang
28 tháng 3 2016 lúc 21:54

giải hộ tớ đi

Nguyễn Đình Vũ
Xem chi tiết
Trương Mỹ Hoa
Xem chi tiết
Nguyễn Thành Đạt
Xem chi tiết

\(n^2-n+1\) là số chính phương

=>\(n^2-n+1=k^2\)

=>\(4n^2-4n+4=4k^2\)

=>\(4n^2-4n+1+3=4k^2\)

=>\(\left(2n-1\right)^2-4k^2=-3\)

=>(2n-1-2k)(2n-1+2k)=-3

=>(2n-1-2k;2n-1+2k)∈{(1;-3);(-3;1);(-1;3);(3;-1)}

TH1: 2n-1-2k=1 và 2n-1+2k=-3

=>2n-1-2k+2n-1+2k=1-3

=>4n-2=-2

=>4n=0

=>n=0(nhận)

TH2: 2n-1-2k=-3 và 2n-1+2k=1

=>2n-1-2k+2n-1+2k=1-3

=>4n-2=-2

=>4n=0

=>n=0(nhận)

TH3: 2n-1-2k=-1 và 2n-1+2k=3

=>2n-1-2k+2n-1+2k=-1+3

=>4n-2=2

=>4n=4

=>n=1(nhận)

TH4: 2n-1-2k=3 và 2n-1+2k=-1

=>2n-1-2k+2n-1+2k=-1+3

=>4n-2=2

=>4n=4

=>n=1(nhận)

THI QUYNH HOA BUI
Xem chi tiết
ILoveMath
10 tháng 12 2021 lúc 21:18

Giả sử \(A=n^2+4n+11\) là số chính phương

đặt \(n^2+4n+11=k^2>0\)

      \(\Rightarrow\left(n^2+4n+4\right)+7=k^2\\ \Rightarrow\left(n+2\right)^2-k^2=-7\\ \Rightarrow\left(n-k+2\right)\left(n+k+2\right)=-7\)

Ta có n,k>0⇒n+k+2>0; n-k+2<n+k+2; n-k+2,n+k+2∈Ư(-7)

Ta có bảng:

n-k+2-1-7
n+k+271
n1-5(loại)
k44

Vậy n=1

 

Nguyễn Thị Mỹ Quỳnh
Xem chi tiết
THI QUYNH HOA BUI
Xem chi tiết
Trần Tuấn Hoàng
9 tháng 3 2022 lúc 21:52

-Vì \(n+1,n+13\) là các số chính phương nên đặt \(n+1=a^2,n+13=b^2\)

\(\Rightarrow b^2-a^2=n+13-\left(n+1\right)=12\)

\(\Rightarrow\left(b-a\right)\left(b+a\right)=12=\left[{}\begin{matrix}1.12\\2.6\\3.4\end{matrix}\right.\)

-Vì \(b-a< b+a\)

\(\Rightarrow\left[{}\begin{matrix}b-a=1;b+a=12\\b-a=2;b+a=6\\b-a=3;b+a=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}b=\dfrac{13}{2};a=\dfrac{11}{2}\left(loại\right)\\b=4;a=2\left(nhận\right)\\b=\dfrac{7}{2};a=\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

-Vậy \(n=3\) thì n+1 và n+12 đều là các số chính phương.

 

Nguyễn Quang Đức
Xem chi tiết