Rút gọn biểu thức sau : |x-2 | - 2.| 3-x |
rút gọn biểu thức sau rồi tìm giá trị x dể biểu thức rút gọn duơng
(x^2-4x+4)/(x^3-2x^2-(4x-8))
rút gọn biểu thức sau rồi tìm giá trị x dể biểu thức rút gọn duơng
(x^2-4x+4)/(x^3-2x^2-(4x-8))
Rút gọn biểu thức sau: (x + 2)(x – 2) – (x – 3)(x + 1)
(x + 2)(x – 2) – (x – 3)(x + 1)
= x2 – 22 – (x2 + x – 3x – 3)
= x2 – 4 – x2 – x + 3x + 3
= 2x – 1
1 a. Rút gọn biểu thức sau A = \(\left(x^{\text{2}}-2x+4\right):\left(x^3+8\right)-x^2\) rồi tính giá trị của A tại x = -2
b. Rút gọn biểu thức B = (x - 2) : 2x + 5x rồi tính giá trị của biểu thức B tại x = 0
a) rút gọn biểu thức
A = 5 ( x + 1 )2 - 3 ( x -3 )2 - 4 ( x + 2 ) ( x - 2 )
b) rút gọn các biểu thức sau và tính giá trị của biểu thức tại x = -7
B = ( 2x - 3 ) ( 3x + 5 ) - 2x ( x - 2 )2 - ( 2x - 3 ) ( 2x + 3 )
`Answer:`
`a)`
`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`
`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`
`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`
`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`
`=>A=-2x^2+28x-6`
`b)`
`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`
`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`
`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`
`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`
Thay `x=-7` vào ta được:
`B=10(-7)^2-2(-7)^3-7(-7)-6`
`=>B=10.49-2(-343)+49-6`
`=>B=490+686+49-6`
`=>B=1219`
Rút gọn biểu thức sau:
(x-4)(x+3)-(3-x)^2
(x-4)(x+3)-\(\left(3-x\right)^2\)
\(\Leftrightarrow\)(x-4)(x+3)-(x+3)(x+3)
\(\Leftrightarrow\)(x-4-x-3)(x+3)
\(\Leftrightarrow\)(-7)(x-3)
\(\Leftrightarrow\)21-7x
rút gọn biểu thức sau: (x+2)(x-2)-(x-3)(x+1)
(x+2)(x-2)-(x-3)(x+1)
=x2-4-(x2-2x-3)
=x2-4-x2+2x+3
=2x-1
het noi nha trieu dang
RÚT GỌN BIỂU THỨC SAU :
(5*x-3)^2+2*(5*x-3)*(2*x+3)+(2*x+3)^2
Rút gọn các biểu thức sau : a)(x^2-3)/(x+căn3)
ĐKXĐ: `x>=0;x\ne9`
`(x^2-3)/(sqrtx-3)=((x-sqrt3)(x+sqrt3))/(x+sqrt3)=x-sqrt3`
`a)(x^2-3)/(x+\sqrt3)`
`->` ĐKXĐ : `x>=0;x\ne9`
`=((x-\sqrt3)(x+\sqrt3))/(x+\sqrt3)`
`=(x-\sqrt3)/1`
`=x-\sqrt3`
Rút gọn biểu thức sau A = X+3/X^2-1 - X+1/X^2-X
\(A=\frac{x+3}{x^2-1}-\frac{x+1}{x^2-x}=\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{x\left(x-1\right)}\)
\(=\frac{x\left(x+3\right)-\left(x+1\right)\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+3x-x^2-2x-1}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{1}{x\left(x+1\right)}\)
Chúc bạn học tốt !!!
Ta có: A = \(\frac{x+3}{x^2-1}-\frac{x+1}{x^2-x}\)
=> A = \(\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{x\left(x-1\right)}\)
=> A = \(\frac{x\left(x+3\right)}{x\left(x-1\right)\left(x+1\right)}-\frac{\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}\)
=> A = \(\frac{x\left(x+3\right)-\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}\)
=> A = \(\frac{x^2+3x-x^2-2x-1}{x\left(x-1\right)\left(x+1\right)}\)
=> A = \(\frac{x-1}{x\left(x-1\right)\left(x+1\right)}\)
=> A = \(\frac{1}{x\left(x+1\right)}\) (Đk: x \(\ne\)0 hoặc x \(\ne\)-1)