Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phanthilam
Xem chi tiết
Huỳnh Quang Sang
12 tháng 4 2020 lúc 10:37

Ta có : \(x=5x',y=5y'\)trong đó a' và b' là hai số nguyên tố cùng nhau

\(x+y=12\Rightarrow5\left(x'+y'\right)=12\Rightarrow x'+y'=12:5=2,4\)

Giả sử \(x'\ge y'\)thì x' = 2,3,y' = 1 hoặc x' = -2,6 , y = 5 => x = \(5\cdot2,3=11,5\)

Không thỏa mãn điều kiện vì 12 không chia hết cho 5

Ta có : \(x=8x',y=8y'\)(như trên)

Có \(x+y=32\Rightarrow8\left(x'+y'\right)=32\Rightarrow x'+y'=4\)

Giả sử \(x'\ge y'\)thì x' = 3 , y' = 1 hoặc x' = 1,y' = 3 => \(x=8\cdot3=24,y=8\cdot1=8\)hoặc \(x=8\cdot1=8,y=8\cdot3=24\)

Vậy \(\left(x,y\right)\in\left\{\left(24,8\right);\left(8,24\right)\right\}\)

Khách vãng lai đã xóa
Bùi Hoàng Bảo
11 tháng 8 2021 lúc 11:35

á đù được của ló đấy

Khách vãng lai đã xóa
Mai Lan
Xem chi tiết
Trần Tuyết Như
22 tháng 6 2015 lúc 13:43

b) 3x = 2y

=>  x/2 = y/3      (1)

7y = 5z

=> y/5 = z/7       (2)

Từ (1) và (2), có:

     \(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng tính chất của dãy tỉ số bằng nhau, có:

     \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

x/10 = 2            => x = 2 x 10 =20

y/15 = 2            => y = 2 x 15 = 30

z/21 = 2            => z = 2 x 21 = 42

Lê Anh Minh
Xem chi tiết
Lê Anh Minh
Xem chi tiết
Xyz OLM
23 tháng 3 2020 lúc 9:44

a)Vì ƯCLN(x;y) = 5

=> \(\hept{\begin{cases}x=5k\\y=5t\end{cases}\left(k;t\inℕ^∗\right)}\)

Lại có : x + y = 12 

<=> 5k + 5t = 12

=> 5(k + t) = 12

=> k + t = 2,4 

mà \(k;t\inℕ^∗\)

=> \(k;t\in\varnothing\)

=> x ; y \(\in\varnothing\)

b) Vì ƯCLN(x;y) = 8

=> \(\hept{\begin{cases}x=8k\\y=8t\end{cases}\left(k;t\inℕ^∗\right)}\)

Lại có x + y = 32

<=> 8k + 8t = 32

=> k + t = 4 

mà \(k;t\inℕ^∗\)

Lập bảng xét các trường hợp : 

k132
t312
x82416 (loại)
y24816 (loại)


Vậy các cặp (x;y) thỏa mãn là : (24 ; 8); (8;24)

Khách vãng lai đã xóa
Lê Anh Minh
Xem chi tiết
cường xo
21 tháng 3 2020 lúc 15:36

a)      Tìm hai số tự nhiên x, y biết x + y = 12 và ƯCLN(x;y) = 5

=) x và y có số tận cùng là 0 hoặc 5

=) Ta có : 12 = 7 + 5 ; 5 + 7 ; 12 + 0 ; 0 + 12

vậy không có TH x và y

Khách vãng lai đã xóa
Minh long
Xem chi tiết
Anh Nguyễn Hoàng
Xem chi tiết
huy7b
12 tháng 5 2023 lúc 20:50

cặc

 

Linh Vũ khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 12 2021 lúc 21:06

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{28}{7}=4\)

Do đó: x=12; y=16

Nguyễn Hoàng Minh
9 tháng 12 2021 lúc 21:07

\(a,Sửa:\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{28}{7}=4\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=16\end{matrix}\right.\\ b,\Rightarrow\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2+5}=\dfrac{-7}{7}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\)

Nguyễn Khánh Đan
9 tháng 12 2021 lúc 21:08

a/Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{28}{7}=4\)

=>x=4.3=12

=>y=4.4.=16

Vậy x=12 và y=16

b/Theo đề ta có:

\(\dfrac{x}{2}=\dfrac{y}{-5}\) và x-y=-7

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\)

=>x=-1.2=-2

=>y=-1.(-5)=5

Vậy x=-2 và y=5

Vua hải tặc
Xem chi tiết
Nobita Kun
11 tháng 11 2018 lúc 23:02

Ta có: x/3 = y/4 => 4x = 3y

Mà x + y = 28 => 4(x + y) = 4.28 => 4x + 4y = 112   

Do đó 3y + 4y = 112

=> 7y = 112

=> y = 112/7 = 16

=> x = 28 - 16 = 12

b, Tương tự nha bạn

Incursion_03
11 tháng 11 2018 lúc 23:07

a) Áp dụng t/c dtsbn

\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{28}{7}=4\)

\(\Rightarrow x=4.3=12\)

  \(y=4.4=16\)

Incursion_03
11 tháng 11 2018 lúc 23:08

b, Áp dụng t/c dtsbn

\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)

\(\Rightarrow x=-1.2=-2\)

  \(y=\left(-1\right).\left(-5\right)=5\)