Giúp em với ạ Tìm ước số chung của nhiều cặp số a và b
Tìm ước chung lớn nhất, rồi sau đó tìm ước chung các số sau:
A) 16 và 42 B) 168; 120 và 144
M.n giúp em với ạ! Em cảm ơn nhìu ạ!
a: UCLN(16;42)=2
UC(16;42)={1;2}
b: UCLN(168;120;144)=24
UC(168;120;144)={1;2;3;4;6;8;12;24}
a)tìm ước của a và b biết ước chung lớn nhất (a,b) = 36
b)tìm ước có 2 chữ số của a và b biết ước chung lớn nhất (a,b) = 50
làm nhanh giúp mình nha
mình xin cảm ơn trước ạ
Lời giải:
a. $ƯC(a,b)\in Ư(36)=\left\{\pm 1; \pm 2; \pm 3; \pm 4; \pm 6; \pm 9; \pm 12; \pm 18; \pm 36\right\}$
b. $Ư(a,b)\in Ư(50)=\left\{\pm 1; \pm 2; \pm 5; \pm 10; \pm 25; \pm 50\right\}$
Suy ra ước có 2 chữ số của $a,b$ là:
$\left\{\pm 10; \pm 25; \pm 50\right\}$
a) Tìm các số tự nhiên n sao cho n+1 là ước của 5
b) Chứng minh rằng số 4 không thể là ước chung của 2 số n+1 và 2n+5 với n là số tự nhiên
Giúp mình với ạ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a) Ta có: \(n+1\inƯ\left(5\right)\)
\(\Rightarrow n+1\in\left\{1;5\right\}\)
\(\Rightarrow n\in\left\{0;4\right\}\)
_Học tốt_
2n+ 5 là số lẻ mà bọi của 4 là số chẵn
vậy ước của 2n + 1 và 2n + 5 không là 4 với mọi n thuộc N
học tốt
Biết 5n + 6 và 8n + 7 (n thuộc N) là hai số không nguyên tố cùng nhau. Tìm ước chung lớn nhất(5n+6,8n+7). Hãy giải chi tiết giúp em nhé, em cảm ơn rất nhiều ạ.
gọi d là ước chung của 5n+6 và 8n+7 nên
\(5n+6⋮d\Rightarrow40n+48⋮d\)
\(8n+7⋮d\Rightarrow40n+35⋮d\)
\(\Rightarrow40n+48-\left(40n+35\right)=13⋮d\Rightarrow d=\left\{1;13\right\}\)
UCLN(5n+6; 8n+7)=13
1. Tìm ƯCLN rồi tìm tập các ước chung (là số tự nhiên) của các số: 60 và 88.
2. Tìm BCNN rồi tìm tập các bội chung (là số tự nhiên) của các số: 24, 30 và 40.
Giúp em với, em cảm ơn.
Bài 1:
60= 22.3.5 ; 88 = 23.11
ƯCLN(60;88)= 22 = 4
ƯC(60;88)=Ư(4)={1;2;4}
Bài 2:
24= 23.3 ; 30=2.3.5 ; 40 = 23.5
BCNN(24;30;40)=23.3.5= 120
BC(24;30;40)=B(120)={0;120;240;360;...}
Tìm số nguyên tố \(p\) sao cho \(p^4+29\) có đúng 8 ước số là số nguyên dương.
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán, gợi ý và giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều lắm ạ!
Xét p=2\(\Rightarrow p^4+29=45=3^2.5\), có 6 ước số là SND, loại
Xét p=3\(\Rightarrow p^4+29=110=2.5.11\), có 8 ước số là SND, tm
Xét p=5\(\Rightarrow p^4+29=654=2.3.109\) , có 8 ước số là SND, tm
Xét p\(\ge6\). Do p là SNT nên p có dạng \(6k+1\) hoặc \(6k-1\) (k\(\in N\)*)
TH1: p=6k+1
Khi đó ta có \(p^4+29=\left(6k+1\right)^4+29\equiv1+29\equiv0\left(mod6\right)\)
Ta cũng có: \(p^4+29=\left(6k+1\right)^4+29\equiv0\left(mod5\right)\)
vì \(\left(6k+1\right)⋮5̸\)
\(\Rightarrow p^4+29=6.5.a=2.3.5.a\)(a là STN)\(\Rightarrow p^4+29\) có nhiều hơn 8 ước số nguyên dương, loại.
TH2: p=6k-1. Chứng minh tương tự ta thấy không có p thoả mãn
\(\Rightarrow p\ge6\) không thoả mãn
Vậy....
Cho a, b là hai số nguyên dương, a > b và a,b có nhiều hơn một ước số chung. CMR ước số chung lớn thứ hai của a và b bằng ước số chung lớn thứ hai của a và a - b.
B1: tìm ƯCLN(112;132;276) bằng phương pháp phân tích ra thừa số nguyên tố.
B2:tìm ước chung lớn nhất của hai số 112, 132là a Tìm ước chung lớn nhất của hai số a và 276 là b. hãy so sánh b và đáp số ở bài tập 1. từ đó em phát biểu một phương pháp tìm ƯCLN của nhiều số
Bài 1: UCLN(112;132;276)
112 = 24.7
132 = 22. 3 . 11
276 =22. 3 .23
=> UCLN(112;132;276)= 22 = 4
Tìm tất cả các cặp số nguyên tố \(\left(p,q\right)\) thỏa mãn : \(p^q+7.q^p\) cũng là số nguyên tố ?
P/s: Em xin phép nhờ sự giúp đỡ của quý thầy cô giáo và các bạn yêu toán, gợi ý giúp đỡ
em với ạ !
Em cám ơn nhiều ạ!
Đặt \(a=p^q+7q^p\)
Nếu p; q đều bằng 2 \(\Rightarrow a=2^2+7.2^2\) là hợp số (ktm)
Nếu p; q cùng lớn hơn 2 \(\Rightarrow p^q\) và \(q^p\) đều lẻ
\(\Rightarrow a=p^q+7q^p\) là số chẵn lớn hơn 2 \(\Rightarrow\) là hợp số (ktm)
\(\Rightarrow\) Có đúng 1 số trong p; q phải bằng 2, số còn lại là SNT lẻ
TH1: \(p=2\Rightarrow a=2^q+7.q^2\)
- Nếu \(q=3\Rightarrow a=2^3+7.3^2=71\) là SNT (thỏa mãn)
- Nếu \(q>3\Rightarrow q^2\equiv1\left(mod3\right)\Rightarrow7q^2\equiv1\left(mod3\right)\)
\(2^q=2^{2k+1}=2.4^k\equiv2\left(mod3\right)\)
\(\Rightarrow a=2^q+7.q^2\equiv2+1\left(mod3\right)\Rightarrow a⋮3\) là hợp số (ktm)
TH2: \(q=2\Rightarrow a=p^2+7.2^p\)
- Nếu \(p=3\Rightarrow a=3^2+7.2^3=65\) ko phải SNT (ktm)
- Nếu \(p>3\Rightarrow p^2\equiv1\left(mod3\right)\)
\(7.2^p=7.2^{2k+1}=14.4^k\equiv2\left(mod3\right)\)
\(\Rightarrow p^2+7.2^p⋮3\) là hợp số (ktm)
Vậy \(\left(p;q\right)=\left(2;3\right)\) là cặp SNT duy nhất thỏa mãn yêu cầu