\(A=\frac{12}{1.5}+\frac{12}{5.9}+\frac{12}{9.13}+..............+\frac{12}{101.105}\)
\(C=\frac{5}{1.5}+\frac{5}{5.9}+\frac{5}{9.13}+...+\frac{5}{101.105}\)
cậu nhâ n cả 2 vế của C với 4 / 5 ý ra lu n ak
\(C=\frac{5}{1.5}+\frac{5}{5.9}+\frac{5}{9.13}+...+\frac{5}{101.105}\)
\(C=5.\left(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{101.105}\right)\)
\(C=5.\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+....+\frac{1}{101}-\frac{1}{105}\right)\)
\(C=\frac{5}{4}.\left(1-\frac{1}{105}\right)\)
\(C=\frac{5}{4}.\frac{104}{105}\)
\(C=\frac{26}{21}\)
\(C=\frac{5}{1.5}+\frac{5}{5.9}+\frac{5}{9.13}+...+\frac{5}{101.105}\)
\(\Rightarrow\frac{4}{5}C=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{101.105}\)
\(\Rightarrow\frac{4}{5}C=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+....+\frac{1}{101}-\frac{1}{105}\)
\(\Rightarrow\frac{4}{5}C=1-\frac{1}{105}\)
\(\Rightarrow\frac{4}{5}C=\frac{104}{105}\)
\(\Rightarrow C=\frac{104}{105}.\frac{5}{4}=\frac{26}{21}\)
Tính nhanh :
A = \(\frac{12}{1.5}\)+ \(\frac{12}{5.9}\)+ \(\frac{12}{9.3}\)+ ... + \(\frac{12}{101.105}\)
B = ( 1 - \(\frac{1}{21}\)) x ( 1 -\(\frac{1}{28}\)) x ( 1 - \(\frac{1}{36}\)) x ... x ( 1 -\(\frac{1}{861}\))
\(A=\frac{12}{1.5}+\frac{12}{5.9}+\frac{12}{9.13}+.............+\frac{12}{101.105}\)
\(=3.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+............+\frac{4}{101.105}\right)\)
\(=3\left(1-\frac{1}{105}\right)\)
\(=3.\frac{104}{105}=\frac{312}{105}\)
\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{x.\left(x+4\right)}\)
tìm A khi x bằng 12, 2, \(\frac{5}{6}\)
\(4A=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{x.\left(x+4\right)}\)
\(4A=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{x}-\frac{1}{x+4}\)
\(4A=1-\frac{1}{x+4}\)
\(4A=\frac{x+4-1}{x+4}\)
\(A=\frac{x+3}{\text{4(x+4)}}\)
Bạn tự thay rồi tính nhé
\(A=\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+........+\frac{1}{x\cdot\left(x+4\right)}\)
\(4A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+........+\frac{4}{x\cdot\left(x+4\right)}\)
\(4A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+.......+\frac{1}{x}-\frac{1}{x+4}\)
\(4A=1-\frac{1}{x+4}\)
\(A=\left(1-\frac{1}{x+4}\right):4\)
Khi x = 12 => \(A=\left(1-\frac{1}{12+4}\right):4\)
A = \(\left(1-\frac{1}{16}:4\right)\)
A = \(\frac{15}{16}:4=\frac{15}{64}\)
Khi x = 2 => \(A=\left(1-\frac{1}{2+4}\right):4\)
A = \(\left(1-\frac{1}{6}\right):4\)
A \(=\frac{5}{6}:4=\frac{5}{24}\)
Khi x = \(\frac{5}{6}\)=> \(A=\left(1-\frac{1}{\frac{5}{6}+4}\right):4\)
A = \(\left(1-\frac{1}{\frac{29}{6}}\right):4\)
A = \(\frac{23}{29}:4=\frac{23}{116}\)
\(\frac{3}{1.5}+\frac{3}{5.9}+\frac{3}{9.13}+....+\frac{3}{101.105}\)
chú thích: dấu " . " là dấu nhân
các bạn giúp mik nhé
\(A=3\times\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{101}-\frac{1}{105}\right)\)
\(A=3\times\left(1-\frac{1}{105}\right)\)
\(A=3\times\frac{104}{105}\)
\(A=\frac{104}{35}\)
a) B = \(\frac{4}{1.3}+\frac{4}{3.5}+\frac{4}{5.7}+.......+\frac{4}{99.101}\)
b) C = \(\frac{5}{1.5}+\frac{5}{5.9}+\frac{5}{9.13}+......+\frac{5}{101.105}\)
a, \(\frac{1}{2}.B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(\frac{1}{2}.B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(\frac{1}{2}.B=1-\frac{1}{101}=\frac{100}{101}\)
\(B=\frac{100}{101}.2=\frac{200}{101}\)
b, \(\frac{4}{5}.C=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{101.105}\)
\(\frac{4}{5}.C=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{101}-\frac{1}{105}\)
\(\frac{4}{5}.C=1-\frac{1}{105}=\frac{104}{105}\)
\(C=\frac{104}{105}.\frac{5}{4}=\frac{26}{21}\)
\(B=\frac{2}{2}\cdot\left(\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+....+\frac{4}{99\cdot101}\right)\)
\(=\frac{4}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right)\)
\(=2\cdot\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=2\cdot\left(1-\frac{1}{101}\right)\)
\(=2\cdot\frac{100}{101}\)
\(=1\frac{99}{101}\)
a) \(B=\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+...+\frac{4}{99\cdot101}\)
\(\Rightarrow\frac{2}{4}B=\frac{2}{4}\left(\frac{4}{1\cdot3}+\frac{4}{3\cdot5}+\frac{4}{5\cdot7}+...+\frac{4}{99\cdot101}\right)\)
\(\Leftrightarrow\frac{2}{4}B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+....+\frac{2}{99\cdot101}\)
\(\Leftrightarrow\frac{2}{4}B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{99}-\frac{1}{101}\)
\(\Leftrightarrow\frac{2}{4}B=1-\frac{1}{101}=\frac{100}{101}\)
\(\Leftrightarrow B=\frac{100}{101}:\frac{2}{4}=\frac{100\cdot4}{101\cdot2}=\frac{200}{101}\)
4\(\frac{1}{2}\)-\(\frac{15}{10.9}-\frac{15}{9.8}-...-\frac{15}{3.2}-\frac{15}{2.1}\)
\(\frac{6}{2.5}+\frac{8}{5.9}+\frac{12}{9.15}\)
\(1-\frac{2}{2.1}-\frac{6}{2.5}-\frac{8}{5.9}-\frac{8}{9.13}\)
\(B=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{197.200}\)
\(C=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)
\(D=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{101.105}\)
\(E=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
A=\(\frac{8}{1.5}+\frac{8}{5.9}+\frac{8}{9.13}+.....+\frac{8}{25.29}\)
B=\(\frac{3}{5.8}.\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\)
C=\(\frac{1}{8}+\frac{1}{104}+\frac{1}{234}+\frac{1}{414}+\frac{1}{644}+\frac{1}{924}+\frac{1}{1254}\)
Giúp với! mình cần gấp trước sáng mai, dấu chấm là nhân, ko phải dấu phẩy nha, mìk cần gấp lắm, mong mn giúp đỡ!! cảm ơn nhiều lắm ạ!!!
A=8/1.5 + 8/5.9 + 8/9.13+ ... +8/25.29
A=2 . (2/1.5 +4/5.9 + 4/9.13 + ...... +4/25.29
A=2.(1-1/5+1/5-1/9+1/9-1/13+...+1/25-1/29
A=2.(1-1/29)
A=2. 28/29
A=56/29
Tính tổng:
C=\(\frac{3}{1.5}+\frac{3}{5.9}+\frac{3}{9.13}+...+\frac{3}{101.105}\)
D=\(\frac{4}{2.7}+\frac{4}{7.12}+\frac{4}{12.17}+...+\frac{4}{102.107}\)
E=\(\frac{5}{3.7}+\frac{5}{7.11}+\frac{5}{11.15}+...+\frac{5}{103.107}\)
F=\(\frac{6}{2.7}+\frac{6}{7.12}+\frac{6}{12.17}+...+\frac{6}{102.107}\)
Chỉ cần để các thừa số ra ngoài rồi nhân các số mà bằng khoảng cách của mẫu lên tử là giải được
LÀM TẮT NHÉ :
\(C=\frac{3}{4}\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{101}-\frac{1}{105}\right)\))
\(D=\frac{4}{5}\left(\frac{1}{2}-\frac{1}{7}+...+\frac{1}{102}-\frac{1}{107}\right)\)
tương tự với các phần còn lại