Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Kim Ngân
Xem chi tiết
Toru
9 tháng 10 2023 lúc 21:32

\(A=1+3^2+3^4+...+3^{98}+3^{100}\)

\(3^2\cdot A=3^2+3^4+3^6+...+3^{100}+3^{102}\)

\(9A-A=\left(3^2+3^4+3^6+...+3^{100}+3^{102}\right)-\left(1+3^2+3^4+...+3^{98}+3^{100}\right)\)

\(8A=3^{102}-1\)

\(\Rightarrow A=\dfrac{3^{102}-1}{8}\)

Đinh Sỹ Phúc
9 tháng 10 2023 lúc 21:45

A = 1 + 32 + 34 + ..... + 398 + 3100
3A = 3. ( 1 + 32 + 34 + ..... + 398 + 3100 )
3A = 3. 1 + 3. 32 + 3. 34 + ..... + 3. 398 + 3. 3100
3A = 32 + 33 + 34 + ..... + 3100 + 3101
3A - A = ( 32 + 33 + 34 + ..... + 3100 + 3101 ) - ( 1 + 32 + 34 + ..... + 398 + 3100 )
2A = 3101 - 1
A = ( 3101 - 1 ) : 2

Nguyễn Thị Kim Ngân
Xem chi tiết
Akai Haruma
9 tháng 10 2023 lúc 23:30

Lời giải:

$A=1+32+34+....+398+400$

Từ $32$ đến $400$ có số số hạng là:

$(400-32):2+1=185$ (số hạng)

$32+34+....+398+400=(400+32).185:2=39960$

$\Rightarrow A=1+39960=39961$

Xem chi tiết
qlamm
13 tháng 12 2021 lúc 23:05

Tham khảo

Ta có: 3A = 3.(1+3+32+33+...+399+3100)(1+3+32+33+...+399+3100)

3A = 3+32+33+...+3100+31013+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)(3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−13101−1

⇒⇒ A = 3101−123101−12

Vậy A = 3101−12

Xem chi tiết
nguyễn thế hùng
15 tháng 12 2021 lúc 13:32

 

A=3 mũ 101-1 phân số2

 

 

 

 

 

Lưu Võ Tâm Như
16 tháng 12 2021 lúc 14:07

\(A=1-3+3^2-3^3+3^4-...-3^{98}-3^{99}+3^{100}\\ 3A=3-3^2+3^3-3^4-...-3^{98}+3^{99}-3^{100}+3^{101}\\ 3A-A=3^{101}-1\\ \Rightarrow A=\dfrac{3^{101}-1}{2}\)

Phan Lâm Thanh Trúc
Xem chi tiết
Nguyễn Thị Thương Hoài
26 tháng 12 2023 lúc 22:59

Phan Lâm Thanh Trúc
Xem chi tiết
Nguyễn Thị Thương Hoài
26 tháng 12 2023 lúc 22:57

       A =  1 - 3 +  32 -   33 + 34 - ... + 398 - 399 + 3100

      3A =  3 - 32 + 33 - 34+ 3 - ... + 399 - 3100 + 3101

3A + A = 3 - 32+ 33-34+35 -...+399 - 3100 + 3101 + 1 - 3 +...-399+3100

4A   =    3101 + 1

  A    = \(\dfrac{3^{101}+1}{4}\) 

 

Vũ Ngọc Diệp
Xem chi tiết
Nguyễn Bảo Vy
1 tháng 3 2023 lúc 16:33

Theo đề bài ra, ta có :

`A=1+32+34+36+....+32008`

\(\Rightarrow\) `9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010`

`9A - A=(32+34+36+38+....+ 32010)-(1+32+34+36+....+ 32008)`

\(\Rightarrow\) `8A=(-1)+32010`

\(\Rightarrow\) `8A-32010=(-1)`

@Nae

Nguyễn Bảo Vy
1 tháng 3 2023 lúc 16:34

Theo đề bài ra, ta có :

A=1+3^2+3^4+3^6+....+3^2008

 9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010

9A - A= (3^2+3^4+3^6+3^8+....+ 3^2010)- (1+3^2+3^4+3^6+....+ 3^2008)

8A = -1+3^2010

 8A - 3^2010 = (-1)

@Nae

Xem chi tiết

xin lỗi bài trên của mình làm sai

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

nguyentranvietanh
13 tháng 6 2019 lúc 15:34

em den lam

Linh
Xem chi tiết
Sunny
30 tháng 11 2021 lúc 17:47

\(A=1+3+3^2+3^3+...+3^{100}\)

\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)

Trừ theo vế:

\(\Rightarrow3A-A=\left(3+3^2+3^3+...3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)

\(2A=3^{101}-1\Rightarrow A=\dfrac{3^{101}-1}{2}\)

 

Thanh nga Vũ
Xem chi tiết
Đan Khánh
24 tháng 10 2021 lúc 10:27

undefined

duy Chu
24 tháng 10 2021 lúc 10:33

A =1+3+32 +33 +...+ 3100

3A=3.(30+3+32 +33 +...+ 3100)

3A=31+32 +33 +...+ 3101

3A-A=(31+32 +33 +...+ 3101)-(30+3+32 +33 +...+ 3100)

2A=3101-30

A=(3101-1) :2

vậy A=(3101-1) :2

t.i.c cho mình nha