\(40x1\frac{1}{2}\)
1/40x1/30x1/20x1/12x1/6x1/2
viết cách tính ra đi bạn
\(\frac{1}{40}\)x\(\frac{1}{30}\)x\(\frac{1}{20}\)x\(\frac{1}{12}\)x\(\frac{1}{6}\)x\(\frac{1}{2}\)
= \(\frac{1}{40.30.20.12.6.2}\)
= \(\frac{1}{3456000}\)
k mik nha! (kb nhé!!!)
Trung bình cộng của X=34x62+35x80+36x124+37x43+38x21+39x13+40x1 / 344 = bn ???
40x1=40 45x1=45 50x1=50
40x2=80 45x2=90 50x2=100
40x3=120 45x3=135 50x3=150
40x4=? 45x4=? 50x4=?
40x5=? 45x5=? 50x5=?
40x6=? 45x6=? 50x6=?
40x7=? 45x7=? 50x7=?
40x8=? 45x8=? 50x8=?
40x9=? 45x9=? 50x9=?
40x10=400 45x10=450 50x10=500
40x2=80 45x1=45 50x1=50
40x3=120 45x2=90 50x2=100
40x4=160 45x3=135 50x3=150
40x5=200 45x4=180 50x4=200
40x6=240 45x5=225 50x5=250
40x7=280 45x6=270 50x6=300
40x8=320 45x7=315 50x7=350
40x9=360 45x8=360 50x8=400
40x10=400 45x9=405 50x9=450
45x10=450 50x10=500
40 x 4= 160
40 x 5= 200
40 x 6= 240
40 x 7= 280
40 x 8= 320
40 x 9= 360
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+..+\frac{1}{100^2}=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
Có \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\) \(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)....v........v............ \(\frac{1}{50^2}< \frac{1}{49.50}=\frac{1}{49}-\frac{1}{50}\)
Cộng lại \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{50}\)
\(\Rightarrow VT< \frac{1}{2^2}\left(2-\frac{1}{50}\right)=\frac{1}{2}-\frac{1}{2^2.50}< \frac{1}{2}\left(Đpcm\right)\)
ủa toán lớp mấy chứ ko phải lớp 1
uk ko phải toán lớp 1
Tính giá trị của :
D=\(\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}\right)x\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)-\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)x\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}\right)\)
Đặt \(a=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{2019^2}\)
\(b=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\)
Khi đó : \(D=ab-\left(b+1\right)\left(a-1\right)\)
\(\Rightarrow D=ab-\left(ab+a-b-1\right)\)
\(\Rightarrow D=b-a+1=\frac{1}{2020^2}-1+1=\frac{1}{2020^2}\)
Tìm x biết :
\(\frac{1+\frac{1+\frac{1+\frac{3}{2}}{2}}{2}}{1+\frac{2}{1+\frac{2}{1+\frac{2}{3}}}}-x=\frac{\frac{\frac{\frac{2}{3}+1}{3}+1}{3}+1}{\frac{3}{\frac{3}{\frac{3}{2}+1}+1}+1}\)
\(1+\frac{1+\frac{1+\frac{3}{2}}{2}}{2}=1+\frac{1+\frac{\frac{5}{2}}{2}}{2}=1+\frac{1+\frac{5}{4}}{2}=1+\frac{\frac{9}{4}}{2}=1+\frac{9}{8}=\frac{17}{8}\)
\(1+\frac{2}{1+\frac{2}{1+\frac{2}{3}}}=1+\frac{2}{1+\frac{2}{\frac{5}{3}}}=1+\frac{2}{1+\frac{6}{5}}=1+\frac{2}{\frac{11}{5}}=1+\frac{10}{11}=\frac{21}{11}\)
\(1+\frac{1+\frac{1+\frac{2}{3}}{3}}{3}=1+\frac{1+\frac{\frac{5}{3}}{3}}{3}=1+\frac{1+\frac{5}{9}}{3}=1+\frac{\frac{14}{9}}{3}=1+\frac{14}{27}=\frac{41}{27}\)
\(\frac{3}{\frac{3}{\frac{3}{\frac{3}{2}+1}+1}+1}+1=1+\frac{3}{\frac{3}{\frac{3}{\frac{5}{2}}+1}+1}=1+\frac{3}{\frac{3}{\frac{6}{5}+1}+1}=1+\frac{3}{\frac{15}{11}+1}=\frac{59}{26}\)
suy ra
\(\frac{\frac{17}{18}}{\frac{21}{11}}-x=\frac{187}{378}-x=\frac{\frac{41}{27}}{\frac{59}{26}}=\frac{1066}{1593}\Rightarrow x=-\frac{1297}{7434}\)
\(\frac{1+\frac{1+\frac{5}{4}}{2}}{1+\frac{2}{1+\frac{6}{5}}}-x=\frac{\frac{\frac{\frac{5}{3}}{3}+1}{3}+1}{\frac{3}{\frac{\frac{3}{2}+1}{\frac{5}{2}}}+1}\)
\(\frac{1+\frac{9}{\frac{4}{2}}}{1+\frac{2}{\frac{11}{5}}}-x=\frac{\frac{\frac{14}{9}}{3}+1}{\frac{3}{1}+1}\)
\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2020^2}\right)X\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)-\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)X\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)\)Làm nhanh và ngắn gọn nhất có thể nhé ! mình tik cho 10 tik
\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)-\left(\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)\)
\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)(1-1)\)
\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right).0\)
\(M=0\)
Vì số bị trừ và số trừ gồm hai tích đảo ngược nhau nên M=0
\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)
\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)
\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)
\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)
\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)
\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)
\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)
\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)
\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)
\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)
\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)
\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)
\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)
\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)
\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)
\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)
\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)
\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)
TRÌNH BÀY GIÚP MÌNH NHA
Tính:
\(A=\sqrt{\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{4^2}}+\sqrt{\frac{1}{1^2}+\frac{1}{4^2}+\frac{1}{5^2}}+...+\sqrt{\frac{1}{1^2}+\frac{1}{2012^2}+\frac{1}{2013^2}}\)
Xét \(P=\sqrt{\frac{1}{1^2}+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}\) với a>0
\(P^2=1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}\)
\(=\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}\)
\(=\frac{a^2\left(a^2+2a+1+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}\)
\(=\frac{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}\)
\(=\frac{\left(a^2+a+1\right)^2}{a^2\left(a+1\right)^2}\)
\(=\left(\frac{a^2+a+1}{a\left(a+1\right)}\right)^2\)
Do a>o nên \(P=\frac{a^2+a+1}{a\left(a+1\right)}=1+\frac{1}{a}-\frac{1}{a+1}\)
Áp dụng kết quả của P ta có:
\(A=\left(1+\frac{1}{1}-\frac{1}{2}\right)+\left(1+\frac{1}{2}+\frac{1}{3}\right)+....+\left(1+\frac{1}{2012}-\frac{1}{2013}\right)\) \(A=2012+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{2012}-\frac{1}{2013}\right)\)
\(A=2012+1-\frac{1}{2013}\)
\(A=2013-\frac{1}{2013}=\frac{4052168}{2013}\)
Vậy \(A=\frac{4052168}{2013}\)