Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Heo Con

Những câu hỏi liên quan
katori thủy
Xem chi tiết

\(\frac{1}{40}\)x\(\frac{1}{30}\)x\(\frac{1}{20}\)x\(\frac{1}{12}\)x\(\frac{1}{6}\)x\(\frac{1}{2}\)

\(\frac{1}{40.30.20.12.6.2}\)

\(\frac{1}{3456000}\)

k mik nha! (kb nhé!!!)

Xem chi tiết
Nguyễn Tiến Quân
Xem chi tiết
Minh Hồng
13 tháng 12 2021 lúc 12:22

Bn à mắc mớ j pải hỏi như này hả bn???

thuy cao
13 tháng 12 2021 lúc 13:13

40x2=80             45x1=45            50x1=50

40x3=120           45x2=90            50x2=100

40x4=160            45x3=135          50x3=150

40x5=200             45x4=180          50x4=200

40x6=240              45x5=225          50x5=250

40x7=280              45x6=270           50x6=300

40x8=320               45x7=315           50x7=350

40x9=360               45x8=360            50x8=400

40x10=400              45x9=405            50x9=450

                                 45x10=450          50x10=500

 

Đỗ Thị Thảo Linh
13 tháng 12 2021 lúc 21:13

40 x 4= 160

40 x 5= 200

40 x 6= 240

40 x 7= 280

40 x 8= 320

40 x 9= 360 

Incursion_03
Xem chi tiết

??? Đăng cái j z

Nguyen Ha Tuong Vien
1 tháng 3 2022 lúc 7:56

ủa toán lớp mấy chứ ko phải lớp 1

Khách vãng lai đã xóa
Ngô Văn Đăng Khoa
1 tháng 3 2022 lúc 8:01

uk ko phải toán lớp 1

Khách vãng lai đã xóa
Lê Phan Lê Na
Xem chi tiết
Y
14 tháng 5 2019 lúc 18:13

Đặt \(a=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{2019^2}\)

\(b=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\)

Khi đó : \(D=ab-\left(b+1\right)\left(a-1\right)\)

\(\Rightarrow D=ab-\left(ab+a-b-1\right)\)

\(\Rightarrow D=b-a+1=\frac{1}{2020^2}-1+1=\frac{1}{2020^2}\)

Nguyễn Thị Thùy Dương
Xem chi tiết
Hùng Hoàng
30 tháng 11 2015 lúc 21:16

\(1+\frac{1+\frac{1+\frac{3}{2}}{2}}{2}=1+\frac{1+\frac{\frac{5}{2}}{2}}{2}=1+\frac{1+\frac{5}{4}}{2}=1+\frac{\frac{9}{4}}{2}=1+\frac{9}{8}=\frac{17}{8}\)

\(1+\frac{2}{1+\frac{2}{1+\frac{2}{3}}}=1+\frac{2}{1+\frac{2}{\frac{5}{3}}}=1+\frac{2}{1+\frac{6}{5}}=1+\frac{2}{\frac{11}{5}}=1+\frac{10}{11}=\frac{21}{11}\)

\(1+\frac{1+\frac{1+\frac{2}{3}}{3}}{3}=1+\frac{1+\frac{\frac{5}{3}}{3}}{3}=1+\frac{1+\frac{5}{9}}{3}=1+\frac{\frac{14}{9}}{3}=1+\frac{14}{27}=\frac{41}{27}\)

\(\frac{3}{\frac{3}{\frac{3}{\frac{3}{2}+1}+1}+1}+1=1+\frac{3}{\frac{3}{\frac{3}{\frac{5}{2}}+1}+1}=1+\frac{3}{\frac{3}{\frac{6}{5}+1}+1}=1+\frac{3}{\frac{15}{11}+1}=\frac{59}{26}\)

suy ra

\(\frac{\frac{17}{18}}{\frac{21}{11}}-x=\frac{187}{378}-x=\frac{\frac{41}{27}}{\frac{59}{26}}=\frac{1066}{1593}\Rightarrow x=-\frac{1297}{7434}\)

 

ha duy to
30 tháng 11 2015 lúc 20:58

toàn là những bài toán khó vậy

Nguyễn Quốc Khánh
30 tháng 11 2015 lúc 21:12

\(\frac{1+\frac{1+\frac{5}{4}}{2}}{1+\frac{2}{1+\frac{6}{5}}}-x=\frac{\frac{\frac{\frac{5}{3}}{3}+1}{3}+1}{\frac{3}{\frac{\frac{3}{2}+1}{\frac{5}{2}}}+1}\)

\(\frac{1+\frac{9}{\frac{4}{2}}}{1+\frac{2}{\frac{11}{5}}}-x=\frac{\frac{\frac{14}{9}}{3}+1}{\frac{3}{1}+1}\)

 

Robert Lewandwski
Xem chi tiết
Trần Phương Anh
13 tháng 5 2019 lúc 16:36

M = 0

Gà Game thủ
13 tháng 5 2019 lúc 18:49

\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)-\left(\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)\)

\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right)(1-1)\)

\(M=\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\right)\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2020^2}\right).0\)

\(M=0\)

dinh lenh duc dung
18 tháng 5 2019 lúc 20:17

Vì số bị trừ và số trừ gồm hai tích đảo ngược nhau nên M=0

Nguyễn Châu Mỹ Linh
Xem chi tiết
Hoàng Ngô Diệu
Xem chi tiết
Vu Thi Nhuong
8 tháng 9 2015 lúc 23:15

Xét \(P=\sqrt{\frac{1}{1^2}+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}}\) với a>0 

  \(P^2=1+\frac{1}{a^2}+\frac{1}{\left(a+1\right)^2}\) 

           \(=\frac{a^2\left(a+1\right)^2+\left(a+1\right)^2+a^2}{a^2\left(a+1\right)^2}\) 

           \(=\frac{a^2\left(a^2+2a+1+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}\) 

           \(=\frac{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}{a^2\left(a+1\right)^2}\) 

           \(=\frac{\left(a^2+a+1\right)^2}{a^2\left(a+1\right)^2}\) 

           \(=\left(\frac{a^2+a+1}{a\left(a+1\right)}\right)^2\) 

Do a>o nên \(P=\frac{a^2+a+1}{a\left(a+1\right)}=1+\frac{1}{a}-\frac{1}{a+1}\) 

Áp dụng kết quả của P ta có:

 \(A=\left(1+\frac{1}{1}-\frac{1}{2}\right)+\left(1+\frac{1}{2}+\frac{1}{3}\right)+....+\left(1+\frac{1}{2012}-\frac{1}{2013}\right)\)      \(A=2012+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{2012}-\frac{1}{2013}\right)\)  

\(A=2012+1-\frac{1}{2013}\)

\(A=2013-\frac{1}{2013}=\frac{4052168}{2013}\) 

Vậy \(A=\frac{4052168}{2013}\)