Rút gon S=1+1/3+1/3mũ 2+....+1/3 mũ n
S=1/3+1/3mũ 2+1/3 mũ 3+....+1/3 mũ 100
\(S=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(3S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(2S=3S-S=1-\frac{1}{3^{100}}\)
\(S=\frac{1-\frac{1}{3^{100}}}{2}\)
CHỨNG minh rằng:1/3-2/3mũ 2+3/3mũ 3-4/3 mũ 4+...+99/3 mũ 99-100/3 mũ 100<3/16
Mình ngu lắm dân trần đăng ninh chuyên anh mà làm sao giỏi toán được
gọi A là tên biểu thức trên
Ta có :
\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow A+3A=\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)+\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)\)( 2 )
\(\Rightarrow4A.3=12A=3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)( 1 )
Cộng ( 1 ) và ( 2 ) ta được :
\(16A=3-\frac{101}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow A=\frac{3-\frac{101}{3^{99}}-\frac{100}{3^{100}}}{16}\)
\(\Rightarrow A=\frac{3}{16}-\frac{\frac{101}{3^{99}}-\frac{100}{3^{100}}}{16}< \frac{3}{16}\)
A= 1+ 3 +3 mũ 2 +3mũ 3 +3mũ 4 +...+3mũ 100
b= 1+ 4 +4mũ 2 +4mũ 3 +4mũ 4+...+4mũ 50
A=1+3+3^2+3^3+3^4+...+3^100
3A=3+3^2+3^3+3^4+...+3^101
3A-A=(3+3^2+3^3+3^4+...+3^101)-(1+3+3^2+3^3+3^4+...+3^100)
2A=3^101-1
A=(3^101-1):2
phần b làm tương tự phần a nhưng mà là nhân cả biểu thức B với 4 nhé
rút gon A, biết : A=1+4 mũ 2+4 mũ 3+...+4 mũ 59
A=1+4²+4³+...+4⁵⁹
→ 4A = 4+4³+4⁴+...+4⁶⁰
→ 4A - A = (4+4³+4⁴+...+4⁶⁰) - (1+4²+4³+...+4⁵⁹)
→ 3A = 4⁶⁰ + 4 - 1 - 4² = 4⁶⁰ -13
→ A = 4⁶⁰-13/3
A=1+4+4^2+4^3+....+4^59
4A=4.(1+4+4^2+4^3+...+4^59)
4A=4+4^2+4^3+...+4^60
=>4A-A=(4+4^2+4^3+...+4^60)-(1+4+4^2+4^3+...+4^59)
4A-A=4+4^2+4^3+..+4^60-1-4-4^2-4^3-....-4^59
3A=4^60-1
=>A=4^60-1:3
B=1+2+3 mũ 2+3mũ 3 +...+3 mũ 50 +3 mũ 51
\(B=1+2+3^2+\cdot\cdot\cdot+3^{51}\)
\(\Rightarrow B=3+3^2+3^3+\cdot\cdot\cdot+3^{51}\)
\(\Rightarrow3B=3^2+3^3+\cdot\cdot\cdot+3^{52}\)
\(\Rightarrow3B-B=\left(3^2+\cdot\cdot\cdot+3^{52}\right)-\left(3+\cdot\cdot\cdot+3^{51}\right)\)
\(\Rightarrow2B=3^{52}-3\)
\(\Rightarrow B=\frac{3^{52}-3}{2}\)
\(1+2+3^2+3^3+...+3^{50}+3^{51}\)
Đặt tổng trên là A ta có :
\(A=3+3^2+3^3+...+3^{50}+3^{51}\)
\(3A=3^2+3^3+3^4+...+3^{51}+3^{52}\)
\(3A-A=\left(3^2+...+3^{52}\right)-\left(3+...+3^{51}\right)\)
\(2A=3^{52}-3\)
\(A=\frac{3^{52}-3}{2}\)
Vậy...
Cbht
Ta có :
\(B=3+3^2+3^3+...+3^{50}+3^{51}\)
\(3A=3^2+3^3+3^4+...+3^{51}+3^{52}\)
\(3A-A=\left(3^2+...+3^{52}\right)-\left(3+...+3^{51}\right)\)
\(2A=3^{52}-3\)
=> \(A=\frac{3^{52}-3}{2}\)
giúp mk với: tính
M=1+3+3 mũ 2+3mũ 3+...+3mũ 25
Ta có: M = 1 + 3 + 32 + 33 + ... + 325
=> 3M = 3(1 + 3 +32 + 33 + ... + 325)
=> 3M = 3 + 32 + 33 + ... + 325 + 326
=> 3M - M = (3 + 32 + 33 + ... + 326) - (1 + 3 + 32 + 33 + ... + 325)
=> 2M = 326 - 1
=> M = \(\frac{3^{26}-1}{2}\)
^ là mũ nha
M=1+3+3^2+3^3+....+3^25
3M=3+3^2+3^3+3^4+...+3^26
=>2M=3M-M=3^26-1
=>M=2M:2=(3^26-1):2
Vậy M=(3^26-1):2
M=1+3+32+33+......+325
3M=3(1+3+32+33+......+325)
3M=3+32+33+......+325+326
3M-M=(3+32+33+......+325+326) - (1+3+32+33+......+325)
Suy ra:M= (326 - 1) : 2
S = 3+3mũ 2 + 3mũ 3 + 3mũ 4 +…+3 mũ 60
S=3+32+33+....+360
2S=32+33+...+361
2S-S=(32+33+...+361-3+32+33+...+360)
S=361-3
mk không chắc đâu nhé.
S=3+32+33+34+....+360
2.S=3+33+34+35+....+361
2.S-S=361-3
vậy S=3mũ 61-1
câu hỏi này mk làm lâu rùi nên hông nhớ rõ.Nếu sai đừng trách nhé
em có bài tâp này mong mọi ngươì tả lơi nhanh giúp vơí ạ:
bài 1:
N=1+3mũ 2+3 mũ 4+3 mũ 6+...3 mũ 100
P=1+5 mũ 3+ 5 mũ 6+ 5 mũ 9+...+5 mũ 99
bài 2:
cho A=1+3+3 mũ 2 +...+ 3 mũ 10.
tìm sô tư nhiên n biêt 2.A+1=3 mũ n
bài 3:
Tìm hai sô tư nhiên a,b sao cho: (a+b) mũ 3= aba
A= 1 + 3 + 3 mũ 2+ 3 mũ 3+ 3 mũ 4+….+ 3mũ 11 chia hết cho 5 Mong cá achj giúp em ;-;
Bằng một cách thần kì, ta tính được A = \(\dfrac{3^{^{12}}-1}{2}\)
Ta sẽ chứng minh 312 - 1 ⋮ 10, như vậy thì (312 - 1) : 2 là một số nguyên chia hết cho 5
Thật vậy:
Ta có 32 = 9 \(\equiv\) -1 (mod 10)
=> (32)6 \(\equiv\) (-1)6 (mod 10)
=> 312 \(\equiv\) 1 (mod 10)
=> 312 - 1 \(\equiv\) 0 (mod 10)
Hay 312 - 1 chia hết cho 10
Vậy bài toán đã được chứng minh