\(^{\frac{a^3+b^3+c^3}{b^3+c^3+d^3}}\)giúp tui voi nha
cm:\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)giúp tui với nha
Bạn ghi đề thiếu kìa bạn \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)nữa
\(\frac{a}{d}=\frac{a}{b}\times\frac{b}{c}\times\frac{c}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Tìm các số tự nhiên a, b, c, d nhỏ nhất biết :
\(\frac{a}{b}=\frac{5}{3};\frac{b}{c}=\frac{12}{21};\frac{c}{d}=\frac{6}{11}\)
giúp tui với !! Ai nhanh + đúng nhất = tui tick cho nha
Cho a,b,c,d >0. Chứng minh:
\(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
Giúp với nha!!!!!
Áp dụng BĐT cosi ta có
\(\frac{1}{a^3}+\frac{1}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\); \(\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge\frac{3}{b^2c}\); \(\frac{1}{c^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{3}{c^2d}\)
\(\frac{1}{d^3}+\frac{1}{d^3}+\frac{1}{a^3}\ge\frac{3}{d^2a}\)
Cộng các BĐt trên ta có
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\)(1)
Áp dụng BĐT buniacoxki ta có
\(\left(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\right)\left(\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\right)\ge \left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\right)^2\)
Kết hợp với (1) ta được ĐPCM
Dấu bằng xảy ra khi a=b=c
cho a; b; c; d là 4 số khác 0 thỏa mãn: b2=ac ; c2=bd và b3 + c3 + d3 khác 0
chứng minh rằng: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
giúp mình nha. mình đang cần gấp
Ta có:
\(b^2=ac\rightarrow\frac{a}{b}=\frac{b}{c}\) ( \(b\ne0,c\ne0\)
\(c^2=bd\rightarrow\frac{b}{c}=\frac{c}{d}\) \(d\ne0\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\rightarrow\frac{abc}{bcd}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\) ( \(bcd\ne0\)vì \(b^3+c^3+d^3\ne0\))
áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\rightarrow\frac{abc}{bcd}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
\(\frac{abc}{bcd}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)
Cho b2 = ac; c2 = bd. Chứng minh rằng:
a,\(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}=\left(\frac{a+b-c}{b+c-d}\right)^3\)
b,\(\frac{3a^2+5b^4-7c^6}{3b^2+5c^4-7d^6}=\frac{2a^3+4b^5-6c^7}{2b^3+4c^5-6d^7}\)
Giúp mk nha, thứ 3 mình nộp ùi
a/ Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c};c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=k^3\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)
Áp dụng tính chất của tỉ lệ thức ta có:\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=k^3\)
Mặt khác: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\frac{a+b+c}{b+c+d}=k\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=k^3\)
\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(=k^3\right)\)
giup minh nha: Tinh nhanh lop 4
42 x 43 - 12 x 9 - 42 x 3
Bài 3
Cho \(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)
CMR a,b tỉ lệ vs 2 và 3
Bài 4 Cho b\(^2\)= ac
c\(^2\)= bd
CMR \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Giúp mk nha mấy bạn
Cảm ơn trc nha
cho0<a,b,c<1.Chứng minh rằng 2a3+2b3+2c3<3+a2b+b2c+c2a
giúp tui .ai làm đúng vs nhanh nhất tui tick cho nha
Đây nha
Ta có:
(Vì )
Tương tự ta có:
Cộng (1), (2), (3) vế theo vế ta được
Cho \(b^2=a.c\)và \(c^2=b.d\) (a,b,c,d là các số khác 0; b+c\(\ne\)d và \(b^3+c^3\)\(\ne\)\(d^3\))
CMR: \(\frac{a^3+b^3-c^3}{b^3+c^3-d^3}\)= \(\left(\frac{a+b-c}{b+c-d}\right)^3\)
giúp mink nha
cho a,b,c la 3 canh cua mot tam giac cmr
A=\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}\)
lon hon hoac bang 3
làm ơn giúp tui với
đặt b+c-a=x,a+c-b=y,a+b-c=z thì x,y,z>0 do a,b,c>0
=>x+y+z=a+b+c
có a=(y+z)/2 , b=(z+x)/2 ,c=(x+y)/2
A=(y+z)/2x + (z+x)/2y + (x+y)/2z =1/2[(x/y+y/x)+(y/z+z/y)+(x/z+z/x)
Áp dụng bđt cosi : x/y+y/x >= 2,y/z+z/y >= 2,z/x+x/z >= 2
=>A >= 1/2.6=3 (đpcm)
Dấu "=" xảy ra <=> x=y=z<=>b+c-a=a+c-b=a+b-c<=>a=b=c <=> tam giác đó là tam gíac đều
Áp dụng bđt Cauchy-Schawrz dạng Engel ta có:
A = a^2/ab+ac-a^2 + b^2/ab+bc-b^2 + c^2/ac+bc-c^2
A \(\ge\)(a+b+c)^2/2.(ab+bc+ca)-(a^2+b^2+c^2)
A \(\ge\)a^2+b^2+c^2+2.(ab+bc+ca)/2.(ab+bc+ca)-(a^2+b^2+c^2)
A \(\ge\)2.(ab+bc+ca)-(a^2+b^2+c^2)/2.(ab+bc+ca)-(a^2+b^2+c^2) + 2.(a^2+b^2+c^2)/2.(ab+bc+ca)-(a^2+b^2+c^2)
A \(\ge\)1 + 2.(a^2+b^2+c^2)/2.(a^2+b^2+c^2)-(a^2+b^2+c^2)
A \(\ge\) 1 + 2 = 3 (đpcm)
Dấu "=" xảy ra khi a = b = c