Đề: Chứng tỏ phương trình sau vô nghiệm c) [2(|x| + 7)] - 3 = 0
Chứng tỏ phương trình sau vô nghiệm
x^2 + x + 3 = 0
Đặt \(B=x^2+x+3=0\)
\(\Rightarrow2B=2x^2+2x+3=0\)
\(\Leftrightarrow x^2+\left(x^2+2x+1\right)+2=0\)
\(\Leftrightarrow x^2+\left(x+2\right)^2+2=0\)
\(\Leftrightarrow x^2+\left(x+2\right)^2=-2\)
Có : \(x^2\ge0\)
\(\left(x+2\right)^2\ge0\)
\(\Rightarrow x^2+\left(x+2\right)^2\ge0\)
Mà \(-2< 0\)
Vậy pt vô nghiệm .
Cách 1. \(x^2+x+3=\left(x^2+x+\frac{1}{4}\right)+\frac{11}{4}=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}>0\)
Dấu "=" không xảy ra nên pt vô nghiệm.
Cách 2. Ta có \(x^2+x+3=\left(x^2+x+1\right)+2\)
Mà \(x^2+x+1\) là bình phương thiếu của một tổng nên vô nghiệm.
=> PT vô nghiệm.
x2+x+3
=x2+2.x.\(\frac{1}{2}\) +\(\left(\frac{1}{2}\right)^2\)+\(\frac{11}{4}\)
=(x+\(\frac{1}{2}\))2+\(\frac{11}{4}\ge\frac{11}{4}>0\)
Vậy phương trình trên vô nghiệm.
Chứng tỏ phương trình sau vô nghiệm
x^2 + x + 3 = 0
Đặt \(B=x^2+x+3=0\)
\(\Rightarrow2B=2x^2+2x+3=0\)
\(=x^2+\left(x^2+2x+1\right)+2=0\)
\(=x^2+\left(x+2\right)^2+2=0\)
\(\Rightarrow x^2+\left(x+2\right)^2=-2\)
Có:
\(x^2\ge0\)
\(\left(x+2\right)^2\ge0\)
\(\Rightarrow x^2+\left(x+2\right)^2\ge0\)
Mà \(-2< 0\)
Vì vậy phương trình vô nghiệm.
chứng tỏ phương trình sau vô nghiệm
(x-3)^2+3x^3+4=0
Ngồi tick kiếm "tiền"
Ngồi làm mất thời gian
AI thấy đúng thì tick nhé!!!
chứng tỏ phương trình sau vô nghiệm
(x-3)^2+3x^3+4=0
Chứng tỏ rằng các phương trình sau vô nghiệm:
a/ x 2 + 3x + 7 = x 2 + 3x – 2 b/ 2x 2 - 6x + 6 = 0
a) \(x^2+3x+7=x^2+3x-2\Leftrightarrow x^2-x^2+3x-3x=-7-2\)
\(\Leftrightarrow0x=-9\)(vô lí)
Vậy phương trình vô nghiệm
b) \(2x^2-6x+6=0\)(xem đề lại nha bn cái này ko vô nghiệm)
chúc bn học tốt!
Chứng tỏ rằng các phương trình sau vô nghiệm :
a)x^2 +2*x+3 = 0 b)x^2+2x+4=0
a) Ta có: \(x^2+2x+3\)
\(=\left(x^2+2x+1\right)+2\)
\(=\left(x+1\right)^2+2>0\)
Vậy pt vô nghiệm
b) Ta có \(x^2+2x+4\)
\(=\left(x^2+2x+1\right)+3\)
\(=\left(x+1\right)^2+3>0\)
Vậy pt vô nghiệm
Chứng tỏ rằng các phương trình sau đây vô nghiệm: 2(x + 1) = 3 + 2x
Ta có: 2(x + 1) = 3 + 2x ⇔ 2x + 2 = 3 + 2x ⇔ 0x = 1
Vậy phương trình vô nghiệm.
Tìm m để hai phương trình sau tương đương:
a. 3(x-2)=7x+12 và x-5=27-mx
b. 8x-3=5x+12 và 7+mx=22-2x
Chứng tỏ phương thức sau vô nghiệm
X2 -8x+17=0
\(x^2-8x+17=0\)
\(\Leftrightarrow\)\(x^2-8x+16+1=0\)
\(\Leftrightarrow\)\(\left(x-4\right)^2+1=0\)
Ta thấy \(\left(x-4\right)^2\ge0\)\(\Rightarrow\)\(\left(x-4\right)^2+1\ge1\)
Vậy pt vô nghiệm
Chứng tỏ rằng các phương trình sau đây vô nghiệm: 2(1 – 1,5x) + 3x = 0
Ta có: 2(1 – 1,5x) + 3x = 0 ⇔ 2 – 3x + 3x = 0 ⇔ 2 + 0x = 0
Vậy phương trình vô nghiệm.