Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dũng Lê

Những câu hỏi liên quan
Ngô Huyền Trân
Xem chi tiết
Akai Haruma
14 tháng 11 2023 lúc 20:10

Lời giải:
Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $x,y$ là số tự nhiên, $(x,y)=1$

Khi đó:

$a+2b=dx+2dy=d(x+2y)=48(1)$

$dx<24$

$d+3dxy=114$

$\Rightarrow d(1+3xy)=144(2)$

Từ $(1); (2)\Rightarrow (x+2y): (1+3xy)=\frac{1}{3}$

$\Rightarrow 3(x+2y)=1+3xy$ (vô lý vì vế trái chia hết cho 3 còn vế phải thì không) 

Vậy không tồn tại $a,b$ thỏa đề.

Mac Duc Trung
Xem chi tiết
Xyz OLM
10 tháng 6 2021 lúc 15:02

b) Ta có  \(\hept{\begin{cases}3a=2b\\a-b=1\end{cases}}\Rightarrow a=\frac{2}{3}b=b+1\Rightarrow\hept{\begin{cases}b=-3\\a=-2\end{cases}}\)

Khi đó  B = a3 - 3ab + b3 

\(\left(-2\right)^3-3\left(-2\right)\left(-3\right)+\left(-3\right)^3=-8-18-27=-53\)

a) Tương từ câu b) ta tìm được a = -2 ; b = -3

Khi đó A = \(\left(-2\right)^3-12\left(-2\right)^2\left(-3\right)+48\left(-2\right)\left(-3\right)^2-64\left(-3\right)^3\)

\(=-8+144-864+1728=1000\)

Khách vãng lai đã xóa
Nguyễn Thùy Dung
Xem chi tiết
bui manh dung
Xem chi tiết
Trần Thị Loan
9 tháng 7 2015 lúc 10:54

a) Vế trái = a2 - 3a + 2 + a2 - 7a + 12 - 2a2 - 5a + 34 = (a2 + a2 - 2a2) + (-3a - 7a - 5a) + 2 + 12 + 34 = -15a + 48 khác vê phải 

=> đề sai

b) Vế trái = a3 - b3 - (a3 + b3) = -2b3 = vế phải => đpcm

Nguyễn Minh Thương
Xem chi tiết
quynh anh
Xem chi tiết
Nhung Le Hong
Xem chi tiết
Iruko
15 tháng 8 2015 lúc 22:42

Dùng máy tính cầm tay bấm Mode/3+1+>+3 để tìm a,b rồi tự thay nhé

quynh anh
Xem chi tiết
nguyễn thị ánh ngọc
9 tháng 7 2015 lúc 11:31

triều đặng đúng đó quỳnh anh ạ

Minh Triều
9 tháng 7 2015 lúc 11:17

a,(a-1)(a-2)+(a-3)(a-4)-(2a^2+5a+34)

=a2-3a+2+a2-7a+12-2a2-5a-34

=-15a-20 

sai đề kakakakakaka

b, (a-b)(a^2+ab+b^2)-(a+b)(a^2+ab+b^2)

=a3-b3-(a3+b3)

=a3-b3-a3-b3

=-2b3

tranvantinh
Xem chi tiết
tranvantinh
3 tháng 1 2023 lúc 18:34

Lời giải:

Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z

Khi đó, điều kiện đb tương đương với:

(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24

⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24

⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1

Do đó ta có đpcm

Dat Nguyen tuan
3 tháng 1 2023 lúc 18:36

Lời giải:

Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z

Khi đó, điều kiện đb tương đương với:

(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24

⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24

⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1

Do đó ta có đpcm