(1+1/2+1/3+....+1/9+1/10)/ (1/1x10+1/2x9+1/3x8+....+1/8x3+1/9x2+1/10x1)
Tính nhanh
(1+1/2+1/3+....+1/9+1/10)/ (1/1x10+1/2x9+1/3x8+....+1/8x3+1/9x2+1/10x1)
Tính nhanh
\(A=\dfrac{1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{9}+\dfrac{1}{10}}{\dfrac{1}{1x10}+\dfrac{1}{2x9}+\dfrac{1}{3x8}+...+\dfrac{1}{8x3}+\dfrac{1}{9x2}+\dfrac{1}{10x1}}\)
Ta có: \(\frac{1}{1\times10}+\frac{1}{2\times9}+\cdots+\frac{1}{10\times1}\)
\(=2\times\left(\frac{1}{1\times10}+\frac{1}{2\times9}+\cdots+\frac{1}{5\times6}\right)\)
\(=\frac{2}{11}\times\left(\frac{11}{1\times10}+\frac{11}{2\times9}+\cdots+\frac{11}{5\times6}\right)\)
\(=\frac{2}{11}\times\left(1+\frac12+\frac13+\cdots+\frac19+\frac{1}{10}\right)\)
Ta có: \(A=\frac{1+\frac12+\cdots+\frac{1}{10}}{\frac{1}{1\times10}+\frac{1}{2\times9}+\cdots+\frac{1}{9\times2}+\frac{1}{10\times1}}\)
\(=\frac{1+\frac12+\cdots+\frac{1}{10}}{\frac{2}{11}\times\left(1+\frac12+\cdots+\frac{1}{10}\right)}=1:\frac{2}{11}=\frac{11}{2}\)
1+3++6+10+15+..........+45+55
1x10+2x9+3x8+...........+8x3+9x2+10x1
1+3+6+10+...+45+55/1x10+2x9+3x8+....+8x3+9x2+10x1
mọi người giải giúp em bài này với ạ em đang cần gấp !!!!!!!
Em nên gõ công thức trực quan để đề bài rõ ràng nhé

\(\dfrac{1+3+6+10+...+45+55}{1x10+2x9+3x8+...+9x2+10x1}\)
Mọi người bày tui cách giải bài này với. Nhanh nhé. Thanks 😘😘😘
Ta có: \(1\times10+2\times9+\cdots+10\times1\)
\(=2\times\left(1\times10+2\times9+\cdots+5\times6\right)\)
\(=2\times\left(11+18+24+28+30\right)=2\times111=222\)
\(1+3+6+\cdots+45+55\)
\(=\frac{1\times2}{2}+\frac{2\times3}{2}+\frac{3\times4}{2}+\cdots+\frac{9\times10}{2}+\frac{10\times11}{2}\)
\(=\frac12\times\left(1\times2+2\times3+\cdots+10\times11\right)\)
\(=\frac12\times\left\lbrack1\times\left(1+1\right)+2\times\left(2+1\right)+\cdots+10\times\left(10+1\right)\right\rbrack\)
\(=\frac12\times\left\lbrack\left(1\times1+2\times2+\cdots+10\times10\right)+\left(1+2+\cdots+10\right)\right\rbrack\)
\(=\frac12\times\left\lbrack\frac{10\times\left(10+1\right)\times\left(2\times10+1\right)}{6}+\frac{10\times11}{2}\right\rbrack\)
\(=\frac12\times\left\lbrack\frac{10\times11\times21}{6}+5\times11\right\rbrack=\frac12\times\left\lbrack5\times11\times7+5\times11\right\rbrack\)
\(=\frac12\times55\times\left(7+1\right)=55\times\frac82=55\times4=220\)
Ta có: \(\frac{1+3+6+\cdots+45+55}{1\times10+2\times9+\cdots+10\times1}\)
\(=\frac{220}{222}=\frac{110}{111}\)
1+3+6+10+....+45+55
1.10+2x9+3x8+....+8x3+9x2+10x1
\(\dfrac{1+3+6+10+...+45+55}{1x10+9x2+3x8+...9x2+10x1}\)
Ta có: \(1+3+6+10+\cdots+45+55\)
\(=\frac12\times\left(2+6+12+20+\cdots+90+110\right)\)
\(=\frac12\times\left(1\times2+2\times3+\cdots+9\times10+10\times11\right)\)
\(=\frac12\times\left\lbrack1\times\left(1+1\right)+2\times\left(2+1\right)+\cdots+10\times\left(10+1\right)\right\rbrack\)
\(=\frac12\times\left\lbrack\left(1\times1+2\times2+\cdots+10\times10\right)+\left(1+2+\cdots+10\right)\right\rbrack\)
\(=\frac12\times\left\lbrack10\times\left(10+1\right)\times\frac{\left(2\times10+1\right)}{6}+10\times\frac{11}{2}\right\rbrack\)
\(=\frac12\times\left\lbrack10\times11\times\frac{21}{6}+5\times11\right\rbrack=\frac12\times\left\lbrack5\times11\times7+5\times11\right\rbrack\)
\(=\frac12\times5\times11\times\left(7+1\right)=\frac{55}{2}\times8=55\times4=220\)
Ta có: \(1\times10+9\times2+\cdots+10\times1\)
\(=2\times\left(1\times10+2\times9+3\times8+4\times7+5\times6\right)\)
\(=2\times\left\lbrack1\times\left(11-1\right)+2\times\left(11-2\right)+3\times\left(11-3\right)+4\times\left(11-4\right)+5\times\left(11-5\right)\right\rbrack\)
\(=2\times\left\lbrack11\times\left(1+2+3+4+5\right)-\left(1\times1+2\times2+3\times3+4\times4+5\times5\right)\right\rbrack\)
\(=2\times\left\lbrack11\times15-\left(1+4+9+16+25\right)\right\rbrack\)
=2x(165-55)
=2x110
=220
Ta có: \(\frac{1\times10+9\times2+\cdots+10\times1}{1+3+6+10+\cdots+45+55}\)
\(=\frac{220}{220}\)
=1
1) 1/1+2 + 1/1+2+3+.........+1/1+2+3+..............+10
2) 1+3+6+10+.........+45+55/1x10+2x9+.......+9x2+10x1