tìm x
a) ( 3x - 4 )3 = 8
b) 2 . ( 2x + 3 )3 = 250
c) A . 3x - 2 = 36
d) 2x + 2x + 1 + 2x + 2 = 56
Tìm x, biết:
a) (2x + 1)^2 - 4(x + 2)^2 = 9
b) (x + 3)^2 - (x - 4)( x + 8) = 1
c) 3(x + 2)^2 + (2x - 1)^2 - 7(x + 3)(x - 3) = 36
d)(x - 3)(x^2 + 3x + 9) + x(x + 2)(2 - x) = 1
a) \(\left(2x+1\right)^2-4\left(x+2\right)^2=9\\ \Rightarrow\left[2x+1-2\left(x+2\right)\right]\left[2x+1+2\left(x+2\right)\right]=9\\ \Rightarrow\left(2x+1-2x-4\right)\left(2x+1+2x+4\right)=9\\ \Rightarrow-3\left(4x+5\right)=9\\ \Rightarrow4x+5=-3\\ \Rightarrow4x=-8\\ \Rightarrow x=-2\)
\(b) (x+3)^2-(x-4)(x+8)=1 <=>x^2+6x=9-(x^2+8x-4x-32)=0 \)
\(.<=> X^2+6x+9-x^2-8x+4x+32-1=0\)
\(<=>2x=-40<=>x=-20\)
=> ptrình có tập nghiêm S={-20}
c) 3(x + 2)^2 + (2x - 1)^2 - 7(x + 3)(x - 3) = 36
\(<=>3(x^2+4x+4)+(4x^2-4x+1)-7(x^2-9)=36\)
\(<=>3x^2+12x+12+4x^2-4x+1-7x^2+49=0\)
\(<=>8x=-62<=>x=7,75\)
=> ptrình có tập nghiệm S={7,75}
d)d)(x - 3)(x^2 + 3x + 9) + x(x + 2)(2 - x) = 1
\(<=> x^3+3x^2+9x-3x^2-9x-27-x(x^2-4)=1\)
\(<=>x^3+3x^2+9x-3x^2-9x-27-x^3+4x-1=0\)
\(<=> 4x=28<=> x=7\)
=> ptrình có tập nghiệm S={7}
Tìm x
a) -3 1/2 : (4/5-1/2x) = 2^2
b) 2x + 3x = 5
c) -2/3x - 1/3x = -2
d) -2/3 (x+1) - 1/2 = -1/3
a: =>-7/2:(4/5-1/2x)=4
=>4/5-1/2x=-7/2:4=-7/8
=>1/2x=4/5+7/8=67/40
=>x=67/20
b: =>5x=5
=>x=1
c: =>x(-2/3-1/3)=-2
=>-x=-2
=>x=2
d: =>-2/3(x+1)=-1/3+1/2=1/6
=>x+1=-1/6:2/3=-1/6*3/2=-3/12=-1/4
=>x=-1/4-1=-5/4
Tìm x
a) 3x(4x - 3) - 2x(5 - 6x) = 0
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
d) 3x (x + 1) - 5x(3 - x) + 6(x^2 + 2x + 3) = 0
a) 3x(4x-3)-2x(5-6x)=0
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow24x^2-19x=0\)
\(\Leftrightarrow x\left(24x-19\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{19}{24}\)
b) 5(2x-3)+4x(x-2)+2x(3-2x)=0
\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0
\(\Leftrightarrow8x-15=0\)
\(\Leftrightarrow8x=15\)
\(\Leftrightarrow x=\dfrac{15}{8}\)
vậy x=\(\dfrac{15}{8}\)
c)3x(2-x)+2x(x-1)=5x(x+3)
\(\Leftrightarrow6x-3x^2+2x^2-2x=5x^2+15x\\ \Leftrightarrow4x-x^2=5x^2+15x\\ \Leftrightarrow4x-x^2-5x^2-15x=0\\ \)
\(\Leftrightarrow-6x^2-11x=0\\ \Leftrightarrow-x\left(6x+11\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\6x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\6x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-11}{6}\end{matrix}\right.\)
Vậy x=0 hoặc x=\(\dfrac{-11}{6}\)
Tìm X
a) (\(\dfrac{1}{4}\) - X) ( X + \(\dfrac{2}{5}\) ) = 0
b) I 2x + 1 I +\(\dfrac{2}{3}\) = 2
c) (2x - 3 )\(^2\) = 36
d) 7\(^x\) + 2 +2 x 7\(^x\) = 357
a: \(\left(\dfrac{1}{4}-x\right)\left(x+\dfrac{2}{5}\right)=0\)
=>\(\left[{}\begin{matrix}\dfrac{1}{4}-x=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
b: \(\left|2x+1\right|+\dfrac{3}{2}=2\)
=>\(\left|2x+1\right|=\dfrac{1}{2}\)
=>\(\left[{}\begin{matrix}2x+1=\dfrac{1}{2}\\2x+1=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{1}{2}\\2x=-\dfrac{3}{2}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
c: (2x-3)2=36
=>\(\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
d: \(7^{x+2}+2\cdot7^x=357\)
=>\(7^x\cdot49+7^x\cdot2=357\)
=>\(7^x=7\)
=>x=1
a) \(\left(\dfrac{1}{4}-x\right)\left(x+\dfrac{2}{5}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{4}-x=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=-\dfrac{2}{5}\end{matrix}\right.\)
\(---\)
b) \(\left|2x+1\right| +\dfrac{2}{3}=2\)
\( \Rightarrow\left|2x+1\right|=2-\dfrac{2}{3}\)
\(\Rightarrow\left|2x+1\right|=\dfrac{4}{3}\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=\dfrac{4}{3}\\2x+1=-\dfrac{4}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}\\2x=-\dfrac{7}{3}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=-\dfrac{7}{6}\end{matrix}\right.\)
\(---\)
c) \(\left(2x-3\right)^2=36\)
\(\Rightarrow\left(2x-3\right)^2=\left(\pm6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(---\)
d) \(7^{x+2}+2\cdot7^x=357\)
\(\Rightarrow7^x\cdot7^2+2\cdot7^x=357\)
\(\Rightarrow7^x\cdot\left(7^2+2\right)=357\)
\(\Rightarrow7^x\cdot\left(49+2\right)=357\)
\(\Rightarrow7^x\cdot51=357\)
\(\Rightarrow7^x=357:51\)
\(\Rightarrow7^x=7\)
\(\Rightarrow x=1\)
tìm x,biết:
a)(8x^2-4x):(-4x)-(x+2)=8
b)(2x^4-3x^3+x^2):(-1/2x^2)+4(x-1)^2=0
a: Ta có: \(\left(8x^2-4x\right):\left(-4x\right)-\left(x+2\right)=8\)
\(\Leftrightarrow-2x+1-x-2=8\)
\(\Leftrightarrow-3x=9\)
hay x=-3
b: Ta có: \(\left(2x^4-3x^3+x^2\right):\left(-\dfrac{1}{2}x^2\right)+4\left(x-1\right)^2=0\)
\(\Leftrightarrow-4x^2+6x-2+4x^2-8x+4=0\)
\(\Leftrightarrow-2x=-2\)
hay x=1
a)2x+2x+1+2x+2=56
b)3x+3x+2+3x+3=111
a) Ta có 2x + 2x + 1 + 2x + 2 = 56
⇒ 2x ( 1 + 21 + 22 ) = 56
⇒ 2x . 7 = 56
⇒ 2x = 56 : 7 = 8 = 23
Vậy x = 3
b) Ta có 3x + 3x + 2 + 3x + 3 = 111
⇒ 3x ( 1 + 32 + 33 ) = 111
⇒ 3x . 37 = 111
⇒ 3x = 111 : 37 = 3 = 31
Vậy x = 1
1. Tìm x
a. 2.(4-3x)+2x=5(2x-3)
b. \(\dfrac{1}{2}-\left(2x-\dfrac{1}{3}\right)^2=\dfrac{7}{18}\)
a: ta có: \(2\left(4-3x\right)+2x=5\left(2x-3\right)\)
\(\Leftrightarrow8-6x+2x-10x+15=0\)
\(\Leftrightarrow-14x=-23\)
hay \(x=\dfrac{23}{14}\)
b: Ta có: \(\dfrac{1}{2}-\left(2x-\dfrac{1}{3}\right)^2=\dfrac{7}{18}\)
\(\Leftrightarrow\left(2x-\dfrac{1}{3}\right)^2=\dfrac{1}{9}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{1}{3}=\dfrac{1}{3}\\2x-\dfrac{1}{3}=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{2}{3}\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=0\end{matrix}\right.\)
TÌM X
a. 3.(x^2-x+2)-x.(2+3x)=0
b. (x-1)^2 + (x-1)(x+2)=0
c. 2x^3 +3x^2+2x+3=0
d. 2x^2+x=6
\(a,\Rightarrow3x^2-3x+6-2x-3x^2=0\\ \Rightarrow-5x=-6\Rightarrow x=\dfrac{6}{5}\\ b,\Rightarrow\left(x-1\right)\left(x-1+x+2\right)=0\\ \Rightarrow\left(x-2\right)\left(2x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{1}{2}\end{matrix}\right.\\ c,\Rightarrow x^2\left(2x+3\right)+\left(2x+3\right)=0\\ \Rightarrow\left(x^2+1\right)\left(2x+3\right)=0\Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\2x+3=0\end{matrix}\right.\\ \Rightarrow x=-\dfrac{3}{2}\\ d,\Rightarrow2x^2+x-6=0\\ \Rightarrow2x^2+4x-3x-6=0\\ \Rightarrow2x\left(x+2\right)-3\left(x+2\right)=0\\ \Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
Bài 1
a) Thực hiện phép tính: (3x-1)(2x+7)-(12x^3+8x^2-14x) : 2
b) Tính nhanh: B=(63^3-37^3) : 26+63.37
Bài 2: phân tích đa thức thành nhân tử
a) xy^2-25x
b) x(x-y)+2x-2y
c) x^3-3x^2-4x+12
Bài 3:tìm x
a) (x+2)^2+(x-1)^2+(x-3)(x+3)=-8
b) 2021x(x-2020)-x+2020=8
Các bn giúp mk với mk tk cho ai nhanh nhất nè !!!
pls help me mk đang cần vội :(
Bài 1:
\(a,=6x^2+19x-7-6x^3-4x^2+7x=-6x^3+2x^2+26x-7\\ b,B=26\cdot\left(63^2+63\cdot37+37^2\right):26+63\cdot37\\ =63^2+63\cdot37+37^2+63\cdot37\\ =\left(63+37\right)^2=100^2=10000\)
Bài 2:
\(a,=x\left(y^2-25\right)=x\left(y-5\right)\left(y+5\right)\\ b,=\left(x-y\right)\left(x+2\right)\\ c,=\left(x-3\right)\left(x^2-4\right)=\left(x-2\right)\left(x-3\right)\left(x+2\right)\)
Bài 2:
b: \(=\left(x-y\right)\left(x+2\right)\)
Tìm nghiệm : a) (2x-3).(2x+3) B)(x-4).(x-1).(x-2) C)2x(3x-1)-3x(5+2x) D)(3x-2).(3x+2)-4.(x-1)
a) \(\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
c) \(2x\left(3x-1\right)-3x\left(5+2x\right)=0\)
\(\Rightarrow x\left[2\left(3x-1\right)-3\left(5+2x\right)\right]=0\)
\(\Rightarrow x\left(6x-2-15-6x\right)\)
\(\Rightarrow-16x=0\)
\(\Rightarrow x=0\)
d) \(\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\)
\(\Rightarrow9x^2-4-4x+4=0\)
\(\Rightarrow9x^2-4x=0\)
\(\Rightarrow x\left(9x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)
\(a,\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ b,\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
\(c,2x\left(3x-1\right)-3x\left(5+2x\right)=0\\ \Leftrightarrow6x^2-2x-15x-6x^2=0\\ \Leftrightarrow-17x=0\\ \Leftrightarrow x=0\\ d,\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\\ \Leftrightarrow9x^2-4-4x+4=0\\ \Leftrightarrow9x^2-4x=0\\ \Leftrightarrow x\left(9x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)