Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn ngọc trân
Xem chi tiết
Inequalities
Xem chi tiết
Trần Minh Hoàng
31 tháng 12 2020 lúc 11:56

Từ đề bài ta suy ra \(P\left(x\right)=\left(x-2012\right)\left(x-2013\right)\left(x-2014\right).f\left(x\right)+2013\).

Do đó \(P\left(x\right)-2014=\left(x-2012\right)\left(x-2013\right)\left(x-2014\right).f\left(x\right)-1\).

Giả sử đa thức \(P\left(x\right)-2014\) có một nghiệm nguyên x = a. Khi đó ta có: \(\left(a-2012\right)\left(a-2013\right)\left(a-2014\right).f\left(a\right)-1=0\).

Điều trên vô lí vì vế trái chia cho 3 dư 2, trong khi đó vế phải chia hết cho 3.

Vậy ta có đpcm. 

BiBo MoMo
Xem chi tiết
Con Chim 7 Màu
20 tháng 3 2019 lúc 18:57

\(\frac{x+4}{2010}+\frac{x+3}{2011}=\frac{x+2}{2012}+\frac{x+1}{2013}\)

\(\Leftrightarrow\left(\frac{x+4}{2010}+1\right)+\left(\frac{x+3}{2011}+1\right)=\left(\frac{x+2}{2012}+1\right)+\left(\frac{x+1}{2013}+1\right)\)

\(\Leftrightarrow\frac{x+2014}{2010}+\frac{x+2014}{2011}=\frac{x+2014}{2012}+\frac{x+2014}{2013}\)

\(\Leftrightarrow\frac{x+2014}{2010}+\frac{x+2014}{2011}-\frac{x+2014}{2012}-\frac{x+2014}{2013}=0\)

\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)

\(\Leftrightarrow x+2014=0\)

\(\Leftrightarrow x=-2014\)

V...

An Mai
Xem chi tiết
Mr Lazy
19 tháng 6 2015 lúc 13:04

\(\Rightarrow x^{2014}+y^{2014}-2\left(x^{2013}+y^{2013}\right)+x^{2012}+y^{2012}=0\)

\(\Leftrightarrow x^{2012}.\left(x-1\right)^2+y^{2012}.\left(y-1\right)^2=0\)

\(\Rightarrow x=1;y=1\)

\(\Rightarrow P=2\)

nguyen duy nien
9 tháng 4 2019 lúc 22:00

cai gi

nguyen duy nien
9 tháng 4 2019 lúc 22:03

hgjkgj

Phạm Văn Hiếu
Xem chi tiết
huy bình
Xem chi tiết
soyeon_Tiểubàng giải
28 tháng 11 2016 lúc 11:40

2012(x + y) = 2013(y + z) = 2014 (z + x)

\(=\frac{x+y}{\frac{1}{2012}}=\frac{y+z}{\frac{1}{2013}}=\frac{z+x}{\frac{1}{2014}}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x+y}{\frac{1}{2012}}=\frac{y+z}{\frac{1}{2013}}=\frac{z+x}{\frac{1}{2014}}=\frac{\left(z+x\right)-\left(y+z\right)}{\frac{1}{2014}-\frac{1}{2013}}=\frac{\left(y+z\right)-\left(x+y\right)}{\frac{1}{2013}-\frac{1}{2012}}\)

\(=\frac{x-y}{\frac{-1}{2013.2014}}=\frac{z-x}{\frac{-1}{2012.2013}}\)

= (x - y).(-2013.2014) = (z - x).(-2012.2013)

=> (x - y).(-2013.2014).\(\frac{-1}{2013.2014.1006}\) = (z - x).(-2012.2013).\(\frac{-1}{2013.2014.1006}\)

\(\Rightarrow\frac{x-y}{1006}=\frac{z-x}{1007}\left(đpcm\right)\)

Đỗ Phước Nguyên
Xem chi tiết
Nghị Hoàng
12 tháng 9 2016 lúc 20:43

\(\frac{x+1}{2015}+\frac{x+2}{2014}=\frac{x+3}{2013}+\frac{x+4}{2012}\)

\(\left(\frac{x+1}{2015}+1\right)+\left(\frac{x+2}{2014}+1\right)=\left(\frac{x+3}{2013}+1\right)+\left(\frac{x+4}{2012}+1\right)\)

\(\frac{x+2016}{2015}+\frac{x+2016}{2014}=\frac{x+2016}{2013}+\frac{x+2016}{2012}\)

\(\left(x+2016\right).\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)

\(x+2016=0\)

\(x=-2016\)

nguyễn thu hiền
Xem chi tiết
Nguyễn Duy Thanh Tùng
Xem chi tiết