Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Bình Yên
Xem chi tiết
Nguyễn Huy Tú
3 tháng 5 2017 lúc 14:02

\(\dfrac{3}{\left(x+2\right)\left(x+5\right)}+\dfrac{5}{\left(x+5\right)\left(x+10\right)}+\dfrac{7}{\left(x+10\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Rightarrow\dfrac{1}{x+2}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Rightarrow\dfrac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Rightarrow\dfrac{15}{\left(x+2\right)\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Rightarrow x=15\)

Vậy x = 15

Lê thị minh anh
Xem chi tiết
Tuii cũg dễx thưng màk
21 tháng 9 2017 lúc 13:51

Theo đề ta có :

\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Leftrightarrow\frac{\left(x+5\right)-\left(x+2\right)}{\left(x+2\right)\left(x+5\right)}+\frac{\left(x+10\right)-\left(x+5\right)}{\left(x+5\right)\left(x+10\right)}+\frac{\left(x+17\right)-\left(x+10\right)}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Rightarrow\frac{1}{x+2}-\frac{1}{x+17}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Rightarrow\frac{\left(x+17\right)-\left(x+2\right)}{\left(x+2\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Rightarrow\left(x+17\right)-\left(x+2\right)=x\)

\(\Rightarrow x=15\)

Hoàng Quân
Xem chi tiết
Phạm Da Đen
Xem chi tiết
Thắng Nguyễn
Xem chi tiết
TFboys_Lê Phương Thảo
7 tháng 6 2016 lúc 8:09

a

(x+1)-(x-1)-3(x+1)(x-1)

=(x+1)-(x-1)-3x+1.(x-1)

=(x+1)-(x-1)-3x+x-1

=x+1-x+1-3x+x-1

=x-x-3x+x+1+1-1

=-2x

b,

5(x+2)(x-2)-1/2(6-8x)^2+17

=5x+10(x-2)-1/2(36-64x2)+17

=5x+10x-20-18+32x2+17

=5x+10x-20-18+17+32x2

=15x-21+32x2

Nguyễn Hoàng Tiến
7 tháng 6 2016 lúc 10:50

a

(x+1)-(x-1)-3(x+1)(x-1)

=(x+1)-(x-1)-3x+1.(x-1)

=(x+1)-(x-1)-3x+x-1

=x+1-x+1-3x+x-1

=x-x-3x+x+1+1-1

=-2x

b,

5(x+2)(x-2)-1/2(6-8x)^2+17

=5x+10(x-2)-1/2(36-64x2)+17

=5x+10x-20-18+32x2+17

=5x+10x-20-18+17+32x2

=15x-21+32x2

zZz Phan Cả Phát zZz
7 tháng 6 2016 lúc 16:13

a

(x+1)-(x-1)-3(x+1)(x-1)

=(x+1)-(x-1)-3x+1.(x-1)

=(x+1)-(x-1)-3x+x-1

=x+1-x+1-3x+x-1

=x-x-3x+x+1+1-1

=-2x

b,

5(x+2)(x-2)-1/2(6-8x)^2+17

=5x+10(x-2)-1/2(36-64x2)+17

=5x+10x-20-18+32x2+17

=5x+10x-20-18+17+32x2

=15x-21+32x2

Âu Dương Thiên Vy
Xem chi tiết
Đỗ Linh Hương
Xem chi tiết
Nhã Doanh
11 tháng 8 2018 lúc 21:21

\(a.\sqrt{\left(1-\sqrt{5}\right)^2}+1=\left|1-\sqrt{5}\right|+1=\sqrt{5}-1+1=\sqrt{5}\)

\(b.\sqrt{3+2\sqrt{2}}-2=\sqrt{\left(\sqrt{2}+1\right)^2}-2=\sqrt{2}+1-2=\sqrt{2}-1\)

\(c.\sqrt{b^2-b+\dfrac{1}{4}}-\left(2b-\dfrac{1}{2}\right)=\sqrt{\left(b-\dfrac{1}{2}\right)^2}-2b+\dfrac{1}{2}=b-\dfrac{1}{2}-2b+\dfrac{1}{2}=-2b\)

\(d.\sqrt{7+2\sqrt{10}}=\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}=\sqrt{5}+\sqrt{2}\)

\(e.\sqrt{11-4\sqrt{7}}=\sqrt{\left(\sqrt{7}-2\right)^2}=\sqrt{7}-2\)

\(g.3x+\sqrt{x^2-2x+1}=3x+\sqrt{\left(x-1\right)^2}\)

* \(x\ge1\Rightarrow3x+\left|x-1\right|=3x+x-1=4x-1\)

* \(x< 1\Rightarrow3x+\left|x-1\right|=3x+1-x=2x+1\)

\(h.\sqrt{y+2\sqrt{y^2-2y+1}}=\sqrt{y+2\sqrt{\left(y-1\right)^2}}=\sqrt{y+2y-2}=\sqrt{3y-2}\left(y\ge1\right)\) hoặc: \(\sqrt{y+2-2y}=\sqrt{-y+2}\left(y< 1\right)\)

\(H=\sqrt{17-2\sqrt{32}}+\sqrt{17+2\sqrt{32}}\)

\(H^2=17-2\sqrt{32}+17+2\sqrt{32}+2\sqrt{\left(17-2\sqrt{32}\right)\left(17+2\sqrt{32}\right)}=34+2\sqrt{161}\)

\(H=\sqrt{34+2\sqrt{161}}\)

\(k.\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)

Trương Ung Quang
Xem chi tiết
Trà My
27 tháng 5 2017 lúc 16:39

\(M=\frac{z^5.\left(x+y^2\right).\left(x^2-y^3\right).\left(x^2-y\right)}{x^2+y^2+z^2+1}=\frac{\left(-5\right)^5.\left(-4+16^2\right).\left[\left(-4\right)^2-16^3\right].\left[\left(-4\right)^2-16\right]}{\left(-4\right)^2+16^2+\left(-5\right)^2+1}\)

\(=\frac{\left(-5\right)^5.\left(-4+16^2\right).\left[\left(-4\right)^2-16^3\right].0}{\left(-4\right)^2+16^2+\left(-5\right)^2+1}=0\)

hong doan
Xem chi tiết