Cho \(2^n\)+1 là số nguyên tố (n>2). CMR: \(2^n-1\)là hợp số
Bài 1: Cho P là số nguyên tố, P > 3 . Hỏi P^2 + 2018 là số nguyên tố hay hợp số?
Bài 2: Cho n là số tự nhiên lớn hơn 3 sao cho n ko chia hết cho 3. CMR n^2 - 1 và n^2 + 1 ko đồng thời là số nguyên tố.
Bài 3: Cho P là số nguyên tố, P > 3 sao cho 8P^2 - 1 là số nguyên tố. CMR 8P^2 + 1 là hợp số.
Bài 4: Cho P là số nguyên tố, P > 3 sao cho P + 2 là số nguyên tố. CMR P + 1 chia hết cho 6.
Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)
=> p^2 :3(dư 1)
=> p^2+2018 chia hết cho 3 và>3
nên là hợp số
2, Vì n ko chia hết cho 3 và>3
nên n^2 chia 3 dư 1
=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố
3, Ta có:
P>3
p là số nguyên tố=>8p^2 không chia hết cho 3
mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3
Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
mà 2 số trước ko chia hết cho 3
nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)
4, Vì p>3 nên p lẻ
=> p+1 chẵn chia hết cho 2 và>2
p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)
=> p+1=3k+3 chia hết cho 3 và>3
từ các điều trên
=> p chia hết cho 2.3=6 (ĐPCM)
Cho 2^n +1 là số nguyên tố (n>2). CMR 2^n -1 là hợp số.
1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.
1.
\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
Do x, y nguyên dương nên số đã cho là SNT khi:
\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)
\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Thay vào kiểm tra thấy thỏa mãn
2. \(N=n^4+4^n\)
- Với n chẵn hiển nhiên N là hợp số
- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)
\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)
\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)
Mặt khác:
\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)
\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)
\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1
\(\Rightarrow\) N là hợp số
Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).
Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9
Nó cũng không thể chỉ chứa các chữ số 3 và 9 (sẽ chia hết cho 3)
Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)
CMR: nếu 2^n - 1 là số nguyên tố ( n > 2; n thuộc N ) thì 2^n + 1 là hợp số
Đặt 2^n-1 => n=3
2^n+1 => n=3
Vậy 2^n-1=2^3-1=8-1=7
2^n+1=2^3+1=8+1=9
cho 2^n+1 là số nguyên tố(n là số tự nhiên, n>2). cmr: 2^n-1 là hợp số
GIÚP MIK VỚI ĐI CÁC BẠN ƠI!
a)cho p là số chính phương, p>3.Hỏi p mũ 2 +2003 là số nguyên tố hay hợp số
b)cho n>2, n không chia hết cho 3. CMR n mũ 2-1 và n mũ 2 +1 không thể đồng thơi là soó nguyên tố
cho \(2^n+1\) là số nguyên tố (n>2). CMR: \(2^n-1\) là hợp số
Do \(n>2\)
=> \(2^n>2^2=4\) ma 4 > 3
=>\(2^n>3\)
=>\(2^n=\begin{cases}3k+1\\3k+2\end{cases}\)
Neu \(2^n=3k+2\)
=>\(2^n+1=3k+2+1=3k+3⋮3\) ( trai nguoc voi de bai )
=>\(2^n=3k+1\)
=> \(2^n-1=3k+1-1=3k⋮3\)
Vay \(2^n-1\) la hop so
Bài 1:a)Cho n là một số ko chia hết cho 3.CMR n^2 chia 3 dư 1
b)Cho p là một số nguyên tố lớn hơn 3.Hỏi p^2+2003 là số nguyên tố hay hợp số?
Bài 2:Cho p là số nguyên tố lớn hơn 3.
a)chứng tỏ rằng p có dạng 6k+1 và 6k+5
b)Biết 8p +1 cũng là một số nguyên tố,CMR 4p+1 là hợp số
Cho 2n + 1 là số nguyên tố (n>2)
CMR 2n -1 là hợp số
Bài làm
Gọi 2n-1,2n,2n+1 là 3 số nguyên liên tiếp (n>2)
Ta có
2n+1 là số nguyên tố lớn hơn 3
=>2n-1 chia hết cho 3
2n không chia hết cho 3
Vì 2n-1,2n,2n+1 là 3 số nguyên liên tiếp
=> 1 trong 3 số phải chia hết cho 3
=> 2n-1 chia hết cho3 (1)
Vì n>2
=> 2n-1 > 3 (2)
Từ (1) và (2)
=> 2n-1 là hợp số
=> DPCM
P/s tham khảo nha