Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ánh trịnh hồng
Xem chi tiết
⭐Hannie⭐
3 tháng 8 2023 lúc 17:53

`P= 8x^3 -4x^2 +2x+1+x^3+x^2-x+1`

`P=9x^3 -3x^2+x+2`

Alice
3 tháng 8 2023 lúc 17:56

\(\text{ P = (2x-1).4x^2+2x+1+(x+1)x^2-x+1}\)

\(\text{P =}\) \(\text{[(2x-1) . 4x^2 ]}\)\(\text{[(x+1) .x^2]}\)

\(\text{P = }\) \(\text{8x^3 - 4x^2 + 2x^3 + 2x^2 + 2x + 1 + x^3 - x + 1}\)

\(\text{P =}\) \(\text{(8x^3 + 2x^3 + x^3) + (-4x^2 + 2x^2) + (2x - x) + (1 + 1)}\)

\(\text{P =}\) \(\text{11x^3 - 2x^2 + x + 2}\)

Nguyễn Hà Linh
Xem chi tiết
๖ۣۜHả๖ۣۜI
19 tháng 10 2023 lúc 18:09

\(P=cos\left(180^o-\alpha\right).tan\alpha+sin\left(180-\alpha\right)\\ =-cos\alpha.\dfrac{sin\alpha}{cos\alpha}+sin\alpha\\ =-sin\alpha+sin\alpha=0\)

=> Chọn A

Nguyễn Khánh Phương
Xem chi tiết
@DanHee
25 tháng 7 2023 lúc 15:38

\(a,P=\left(5x^2-2xy+y^2\right)-\left(x^2+y^2\right)-\left(4x^2-5xy+1\right)\\ =5x^2-2xy+y^2-x^2-y^2-4x^2+5xy-1\\ =\left(5x^2-x^2-4x^2\right)+\left(y^2-y^2\right)+\left(-2xy+5xy\right)-1\\ =3xy-1\)

\(x+y=6,2\\ \Rightarrow y=6,2-1,2=5\)

Thay \(x=1,2;y=5\)

\(\Rightarrow3.5.1,2-1=17\)

Vui lòng để tên hiển thị
25 tháng 7 2023 lúc 15:39

`P = 5x^2 - x^2 - 4x^2 - 2xy + 5xy + y^2 - y^2 - 1`

`= 3xy - 1`

Thay `x = 1,2; y = 6,2 - 1,2 = 5` vào

`3 xx 1,2 xx 5-1 = 18 - 1 = 17`

hello hello
Xem chi tiết
Thiên Thương Lãnh Chu
18 tháng 2 2021 lúc 16:20

P = \(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)DKXD: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

   = \(\sqrt{x}+\sqrt{x}\)

   = \(2\sqrt{x}\)

Vậy tại x ∈ ĐKXĐ thì P = \(2\sqrt{x}\)

Nguyễn Lê Phước Thịnh
18 tháng 2 2021 lúc 22:54

Ta có: \(P=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(=\sqrt{x}+\sqrt{x}\)

\(=2\sqrt{x}\)

Võ Ngọc Bảo Hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 6 2023 lúc 23:29

P=x^3+3/5x^2y-3xy-3/5x^2y-xy+x^3

=2x^3-4xy

=2*(-2)^3-4*(-2)*1/3

=-16+8/3=-40/3

Hải Yến Lê
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
26 tháng 6 2021 lúc 22:12

\(P=\dfrac{\sqrt{x}+3-\sqrt{x}+3}{x-9}:\dfrac{1}{\sqrt{x}-3}\)

    \(=\dfrac{6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\left(\sqrt{x}-3\right)=\dfrac{6}{\sqrt{x}+3}\)

Khang Diệp Lục
26 tháng 6 2021 lúc 22:12

\(P=\dfrac{\sqrt{x}+3-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\sqrt{x}-3\)

\(P=\dfrac{6}{\sqrt{x}+3}\)

Tuyết Linh Linh
Xem chi tiết
Akai Haruma
2 tháng 3 2021 lúc 19:55

Lời giải:

ĐK: $a\geq 0; a\neq 1$

\(P=\left[\frac{\sqrt{a}(\sqrt{a}+1)}{(a+1)(\sqrt{a}+1)}+\frac{1}{a+1}\right].\frac{a+1}{\sqrt{a}-1}\) 

\(=\left(\frac{\sqrt{a}}{a+1}+\frac{1}{a+1}\right).\frac{a+1}{\sqrt{a}-1}=\frac{\sqrt{a}+1}{a+1}.\frac{a+1}{\sqrt{a}-1}=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)

thu dinh
Xem chi tiết
Đức Hiếu
3 tháng 3 2021 lúc 11:04

\(P=\left(\dfrac{x}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}+1}-\dfrac{2}{1-x}\right):\left(\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\right)\)

\(P=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(x-1\right)}+\dfrac{\left(\sqrt{x}-1\right)}{\left(x-1\right)}+\dfrac{2}{x-1}\right):\left(\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\right)\)

\(P=\dfrac{x+\sqrt{x}+\sqrt{x}-1+2}{x-1}:\dfrac{\sqrt{x}-2}{1-\sqrt{x}}=\dfrac{x+2\sqrt{x}+1}{x-1}:\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)

\(P=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-2}{1-\sqrt{x}}=-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)

thu dinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 3 2021 lúc 13:48

Ta có: \(P=\left(\dfrac{x-2\sqrt{x}+3}{x-2\sqrt{x}-3}-\dfrac{x}{x-3\sqrt{x}}\right):\dfrac{1-\sqrt{x}}{3-\sqrt{x}}\)

\(=\left(\dfrac{x\sqrt{x}-2x+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}-\dfrac{x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\)

\(=\dfrac{x\sqrt{x}-2x+3\sqrt{x}-x\sqrt{x}-x}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)

\(=\dfrac{-3x+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-3\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{-3}{\sqrt{x}+1}\)

thu dinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 3 2021 lúc 13:45

Ta có: \(P=\left(\dfrac{2\sqrt{x}+x+1}{\sqrt{x}+1}\right)\cdot\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right):\left(1-\sqrt{x}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\right)\cdot\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\cdot\dfrac{1}{1-\sqrt{x}}\)

\(=\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)\cdot\dfrac{1}{1-\sqrt{x}}\)

\(=\sqrt{x}+1\)