rút gọn biểu thức
p - ( 416 + 259 ) + ( 116 + 259)
P (2x-1).4x^2+2x+1+(x+1)x^2-x+1
`P= 8x^3 -4x^2 +2x+1+x^3+x^2-x+1`
`P=9x^3 -3x^2+x+2`
\(\text{ P = (2x-1).4x^2+2x+1+(x+1)x^2-x+1}\)
\(\text{P =}\) \(\text{[(2x-1) . 4x^2 ]}\)\(\text{[(x+1) .x^2]}\)
\(\text{P = }\) \(\text{8x^3 - 4x^2 + 2x^3 + 2x^2 + 2x + 1 + x^3 - x + 1}\)
\(\text{P =}\) \(\text{(8x^3 + 2x^3 + x^3) + (-4x^2 + 2x^2) + (2x - x) + (1 + 1)}\)
\(\text{P =}\) \(\text{11x^3 - 2x^2 + x + 2}\)
Rút gọn biểu thức
P=cos(180°- α).tanα + sin(180°- α)
A. P=0
B. P=1
C. P=-2sinα
D. P=2sinα
\(P=cos\left(180^o-\alpha\right).tan\alpha+sin\left(180-\alpha\right)\\ =-cos\alpha.\dfrac{sin\alpha}{cos\alpha}+sin\alpha\\ =-sin\alpha+sin\alpha=0\)
=> Chọn A
a) rút gọn rồi tính giá trị của biểu thức
P=(5x2 - 2xy +y2 ) - ( x2+y2) - ( 4x2 - 5xy +1)
khi x= 1,2 ; x+y = 6,2
\(a,P=\left(5x^2-2xy+y^2\right)-\left(x^2+y^2\right)-\left(4x^2-5xy+1\right)\\ =5x^2-2xy+y^2-x^2-y^2-4x^2+5xy-1\\ =\left(5x^2-x^2-4x^2\right)+\left(y^2-y^2\right)+\left(-2xy+5xy\right)-1\\ =3xy-1\)
\(x+y=6,2\\ \Rightarrow y=6,2-1,2=5\)
Thay \(x=1,2;y=5\)
\(\Rightarrow3.5.1,2-1=17\)
`P = 5x^2 - x^2 - 4x^2 - 2xy + 5xy + y^2 - y^2 - 1`
`= 3xy - 1`
Thay `x = 1,2; y = 6,2 - 1,2 = 5` vào
`3 xx 1,2 xx 5-1 = 18 - 1 = 17`
2. rút gọn biểu thức
P=\(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
P = \(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)DKXD: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
= \(\sqrt{x}+\sqrt{x}\)
= \(2\sqrt{x}\)
Vậy tại x ∈ ĐKXĐ thì P = \(2\sqrt{x}\)
Ta có: \(P=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(=\sqrt{x}+\sqrt{x}\)
\(=2\sqrt{x}\)
rút gọn và tính giá trị của biểu thức
P=x^3+(3/5x^2y-3xy)-(3/5x^2y+xy-x^3)
tại x=-2;y=1/3
P=x^3+3/5x^2y-3xy-3/5x^2y-xy+x^3
=2x^3-4xy
=2*(-2)^3-4*(-2)*1/3
=-16+8/3=-40/3
Rút gọn biểu thức
P=\(\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{1}{\sqrt{x}-3}\)với x\(\ge\)0 ;x\(\ne\)9
\(P=\dfrac{\sqrt{x}+3-\sqrt{x}+3}{x-9}:\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\left(\sqrt{x}-3\right)=\dfrac{6}{\sqrt{x}+3}\)
\(P=\dfrac{\sqrt{x}+3-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\sqrt{x}-3\)
\(P=\dfrac{6}{\sqrt{x}+3}\)
1)Rút gọn biểu thức
P=\(\left(\dfrac{a+\sqrt{a}}{a\sqrt{a}+a+\sqrt{a}+1}+\dfrac{1}{a+1}\right):\dfrac{\sqrt{a}-1}{a+1}\)
Lời giải:
ĐK: $a\geq 0; a\neq 1$
\(P=\left[\frac{\sqrt{a}(\sqrt{a}+1)}{(a+1)(\sqrt{a}+1)}+\frac{1}{a+1}\right].\frac{a+1}{\sqrt{a}-1}\)
\(=\left(\frac{\sqrt{a}}{a+1}+\frac{1}{a+1}\right).\frac{a+1}{\sqrt{a}-1}=\frac{\sqrt{a}+1}{a+1}.\frac{a+1}{\sqrt{a}-1}=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)
1) Rút gọn biểu thức
P=\(\left(\dfrac{x}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}+1}-\dfrac{2}{1-x}\right):\left(\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\right)\)
\(P=\left(\dfrac{x}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}+1}-\dfrac{2}{1-x}\right):\left(\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\right)\)
\(P=\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(x-1\right)}+\dfrac{\left(\sqrt{x}-1\right)}{\left(x-1\right)}+\dfrac{2}{x-1}\right):\left(\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\right)\)
\(P=\dfrac{x+\sqrt{x}+\sqrt{x}-1+2}{x-1}:\dfrac{\sqrt{x}-2}{1-\sqrt{x}}=\dfrac{x+2\sqrt{x}+1}{x-1}:\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)
\(P=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-2}{1-\sqrt{x}}=-\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
1) Rút gọn biểu thức
P=\(\left(\dfrac{x-2\sqrt{x}+3}{x-2\sqrt{x}-3}-\dfrac{x}{x-3\sqrt{x}}\right):\dfrac{1-\sqrt{x}}{3-\sqrt{x}}\)
Ta có: \(P=\left(\dfrac{x-2\sqrt{x}+3}{x-2\sqrt{x}-3}-\dfrac{x}{x-3\sqrt{x}}\right):\dfrac{1-\sqrt{x}}{3-\sqrt{x}}\)
\(=\left(\dfrac{x\sqrt{x}-2x+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}-\dfrac{x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}-1}{\sqrt{x}-3}\)
\(=\dfrac{x\sqrt{x}-2x+3\sqrt{x}-x\sqrt{x}-x}{\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}-1}\)
\(=\dfrac{-3x+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3}{\sqrt{x}+1}\)
1) Rút gọn biểu thức
P=\(\left(\dfrac{2\sqrt{x}+x+1}{\sqrt{x}+1}\right).\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right):\left(1-\sqrt{x}\right)\)
Ta có: \(P=\left(\dfrac{2\sqrt{x}+x+1}{\sqrt{x}+1}\right)\cdot\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right):\left(1-\sqrt{x}\right)\)
\(=\left(\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\right)\cdot\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\cdot\dfrac{1}{1-\sqrt{x}}\)
\(=\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)\cdot\dfrac{1}{1-\sqrt{x}}\)
\(=\sqrt{x}+1\)