rút gọn biểu thức
a) 24x3 phần 5y2z4 : 8x2 phần 15y3z2
b) x2-25 phần x2-3x : x2+5x phần x2-9
Cho biểu thức P= 1+ 3/x2+5x+6 : ( 8x2/ 4x3-8x2 - 3x/ 3x2-12 -1/x+2)
A) Rút gọn P
B) Tìm các giá trị của x để P= 0; P= 1
C) Tìm cã giá trị của x để P> 0
Cho biểu thức
Q= (2x-x2/ 2x2 +8 - 2x2/ 3x3-2x2+4x-8) (2/x2 + 1-x/x)
A) Rút gọn Q
B) Tìm giá trị nguyên của x để Q có giá trị nguyên
Bài 1:
a) Ta có: \(P=1+\dfrac{3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{4}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\dfrac{4\left(x+2\right)-x-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{4x+8-x-x+2}\)
\(=1+3\cdot\dfrac{\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=1+\dfrac{3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{\left(x+3\right)\left(2x+10\right)+3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{2x^2+10x+6x+30+3x-6}{\left(x+3\right)\left(2x+10\right)}\)
\(=\dfrac{2x^2+19x-6}{\left(x+3\right)\left(2x+10\right)}\)
Cho hai biểu thức A=x phần x+3:B=2 phần x-3 + 3-5x phần x2-9 (x ko bằng +- 3)
a)Tính giá trị biểu thức A khi x=5
b)Thu gọn biểu thức C=A+B
c)Tìm x nguyên để biểu thức C nhận giá trị nguyên
a: Khi x=5 thì A=5/(5+3)=5/8
b: \(C=A+B=\dfrac{x}{x+3}+\dfrac{2}{x-3}+\dfrac{3-5x}{x^2-9}\)
\(=\dfrac{x^2-3x+2x+6+3-5x}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2-6x+9}{\left(x-3\right)\left(x+3\right)}=\dfrac{x-3}{x+3}\)
c: Để C nguyên thì x+3-6 chia hết cho x+3
=>\(x+3\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(x\in\left\{-2;-4;-1;-5;0;-6;-9\right\}\)
Cho biểu thức
A=(x phần x2-4 + 2 phần 2-x + 1 phần 2+x).x+2 phần 2
a) Tìm điều kiện của x để biểu thức A xác định
b) Rút gọn A
c) Tính giá trị của A khi x=-1
`A=(x/[x^2-4]+2/[2-x]+1/[2+x]).[x+2]/2`
`a)ĐK: x \ne +-2`
`b)` Với `x \ne +-2` có:
`A=[x-2(x+2)+x-2]/[(x-2)(x+2)].[x+2]/2`
`A=[x-2x-4+x-2]/[x-2]. 1/2`
`A=[-3]/[x-2]`
`c)x=-1` t/m đk `=>` Thay `x=-1` vào `A` có: `A=[-3]/[-1-2]=1`
.Cho biểu thức A = ( x - 5 ) ( x2 + 5x + 25) - ( x – 2)(x+ 2) + x.(x2 + x + 4)
a) Rút gọn biểu thức A
b) Tính giá trị biểu thức A biết x = -2
b) Tính giá trị biểu thức A biết x2 – 1 = 0
a) A = (x - 5)(x² + 5x + 25) - (x - 2)(x + 2) + x(x² + x + 4)
= x³ - 125 - x² + 4 + x³ + x² + 4x
= (x³ + x³) + (-x² + x²) + 4x + (-125 + 4)
= 2x³ + 4x - 121
b) Tại x = -2 ta có:
A = 2.(-2)³ + 4.(-2) - 121
= 2.(-8) - 8 - 121
= -16 - 129
= -145
c) x² - 1 = 0
x² = 1
x = -1; x = 1
*) Tại x = -1 ta có:
A = 2.(-1)³ + 4.(-1) - 121
= 2.(-1) - 4 - 121
= -2 - 125
= -127
*) Tại x = 1 ta có:
A = 2.1³ + 4.1 - 121
= 2.1 + 4 - 121
= 2 - 117
= -115
Bài 1. Tìm x, biết
a) (x+4)2-x2(x+12)=16
c) (x+3)3-x(3x+1)2+(2x+1)(4x2-2x+1)=28
d) (x-2)3-(x+5)(x2-5x+25)-6x2=11
Bài 2. Rút gọn các biểu thức sau:
A = (x+1)3+(x-1)3
B = (x-3)3-(x+3)(x2-3x+9)+(3x-1)(3x+1)
Bài 2:
a: Ta có: \(A=\left(x+1\right)^3+\left(x-1\right)^3\)
\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1\)
\(=2x^3+6x\)
b: Ta có: \(B=\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
\(=27x-55\)
Rút gọn các biểu thức
a. x(2x2 – 3) – x2(5x + 1) + x2
b. 3x(x – 2) – 5x(1 – x) – 8(x2 – 3)
c. 1/2 x2(6x – 3) – x( x2 + 1/2 (x + 4)
a. x(2x2 – 3) – x2(5x + 1) + x2
= 2x3 – 3x – 5x3 – x2 + x2 = -3x – 3x3
b. 3x(x – 2) – 5x(1 – x) – 8(x2 – 3)
= 3x2 – 6x – 5x + 5x2 – 8x2 + 24
= - 11x + 24
c. 1/2 x2(6x – 3) – x( x2 + 1/2 (x + 4)
= 3x3 - 3/2 x2 – x3 - 1/2 x + 1/2 x + 2
= 2x3 - 3/2 x2 + 2
a, x(2x2-3)-x2(5x+1)x2
=2x3-3x-5x3- x2+x2=-3x-3x3
học tốt nhé!!
b, 3x(x-2)-5x(1-x)-8(x2-3)
=3x2-6x-5x+5x2-8x2+24
=-11x+24
rút gọn phân thức: x2-y2 phần x+y
\(\dfrac{x^2-y^2}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{x+y}=x-y\)
\(\dfrac{x^2-y^2}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{x+y}=x-y\)
Phần dư của phép chia đa thức x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1 cho đa thức x + 1 là
A. 3
B. 2
C. 0
D. 1
Ta có đa thức x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1 chưa (x + 1) nên phần dư là một hằng số
Gọi thương là Q(x) và dư r. Khi đó với mọi x ta có
x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1 = Q(x)(x + 1) + r (1)
Thay x = -1 vào (1) ta được
( ( - 1 ) 2 + 3 . ( - 1 ) + 2 ) 5 + ( ( - 1 ) 2 – 4 ( - 1 ) – 4 ) 5 – 1 = Q(x).(-1 + 1) + r
r = 0 5 + 1 5 – 1 ó r = 0
vậy phần dư của phép chia là r = 0.
đáp án cần chọn là: C
Bài 3: Rút gọn các biểu thức sau:
A = 3x(x2 – 2x + 3) – x2(3x – 2) + 5(x2 – x)
B = x(x2 + xy + y2) – y(x2 + xy + y2)
\(A=3x^3-6x^2+9x-3x^3+2x^2+5x^2-5x=x^2+4x\\ B=\left(x^2+xy+y^2\right)\left(x-y\right)=x^3-y^3\)
Cho biết lim x → 1 2 1 + a x 2 - b x - 2 4 x 3 - 3 x + 1 = c với a , b , c ∈ R . Tập nghiệm của phương trình a x 4 - 2 b x 2 + c + 2 = 0 trên R có số phần tử là
A. 1
B. 3
C. 0
D. 2