bài này thế nào mng:CMR:A=2+2^2+2^3+2^4+...+2^100 Achia hết cho 6
Bài 1:tìm a,b thuộc N biết a xb=891.ƯCLN (a,b)=3
Bài 2:cho A= 4+4^2+4^3=4^4+...+4^100
Chứng minh Achia hết cho 21, 84
giúp mình giải bài này nhé các bạn : 1.tìm số tự nhiên thỏa mạn
2n +13 chia hết cho 2n+5
2.cho A=1+2+22+.........+290
chứng minh rằng: A chia hết cho 7
3. cho A= 2+22+23+............+2100
chứng minh rằng :Achia hết cho 10
2n+13 chia hết cho 2n+5
=>[( 2n+13)-(2n+5)] chia hết cho 2n+5
=>8 chia hết cho 2n+5=>2n+5 la uoc của 8
U(8)={1;2;4;8}
còn lại bạn tự giải quyết nha
bạn nguyen ngoc vinh cho mình biết tại sao lại trừ không ạ
2n+13\(⋮\)2n+5 \(\Rightarrow\)2n+13-2n-5 \(⋮\)2n+5
\(\Leftrightarrow\) 8\(⋮\)2n-5\(\Rightarrow\)2n-5\(\in\)Ư(8)=1,2,4,8
*Xét 2n-5=1\(\Rightarrow\)2n=6=>n=3
........................................
Còn lại bạn tự làm nhé
chúc bạn học giỏi ^_^ !
chứng minh Achia hết cho 155 biết : A= 2^1+2^2+2^3+...+2^100
ta có 155=31*5
=> ta cần c/m A chia hết cho 5 và 31
chứng minh A chia hết cho 5
nhóm A=(2^1+...+2^4)+(2^5+...+2^8)+...+(2^97+...+2^100)
=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^97(1+2+2^2+2^3)
=2*15+2^5*15+...+2^97*15
=15(2+2^5+...+2^97)=5*3*(2+2^5+...+2^97)=>A chia hết cho 5 (1)
c/m A chia hết cho 31
Nhóm A=(2^1+...+2^5)+(2^6+...+2^10)+...+(2^96+...+2^100)
=2(1+2^2+...+2^4)+2^6(1+2^2+...+2^4)+...+2^96(1+2^2+...+2^4)
=2*31+2^6*31+...+2^96*31=31(2+2^6+...+2^96)=> A chioa hết cho 31 (2)
Từ (1) và (2) suy ra A chia hết cho 155
cho mh nha!
A ko chia hết cho 155 nha bạ đề sai rồi
các bạn giải hộ mik bài này với
Cho A=2+22+23+....+260
Chứng minh rằng: a) A chia hết cho 6 b)Achia hết cho 31
A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)=(2+2^2+2^3)+...+(2^58+2^59+2^60)
A=2(1+2)+2^3(1+2)+...+2^59(1+2)=2(1+2+2^2)+...+25^8(1+2+2^2)
A=3(2+2^3+25^+...+2^59)=7(2+2^4+2^7+...+2^55+2^58)
=> A chia hết cho 3 và A cũng chia hết cho 7
a.A= 2(1 + 2+ 2^2 +....+2^59)
=>A chia hết 2
(1 + 2 + 2^2....2^59) chia hết 3 (tìm đọc đã có bài này)
vậy A chia hết cho 2 và 3=>A chia hết 6
b. 31 = (2^4-1)
2A = 2^22 + 2^3 +....+2^61
A=2A-A = 2^61-2 = 2(2^60-1) = 2([2^4]^15-1^15) = 2(2^4-1)(.... ) (hằng đẳng thức a^n - b^n)=> chia het (2^4-1) = 31
các bạn giải hộ mik bài này với
Cho A=2+22+23+....+260
Chứng minh rằng: a) A chia hết cho 6 b)Achia hết cho 31
\(A=2+2^2+2^3+...+2^{60}.\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right).\)
\(=\left(2+4\right)+2^2.\left(2+4\right)+...+2^{58}.\left(2+4\right).\)
\(=6+2^2.6+...+2^{58}.6,\)
\(=6.\left(2^2+...+2^{58}\right).\)
Vay A chia het cho 6
cho A=2+2^2+2^3+2^4+...............+2^100.chung minh Achia het cho 5
A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^100.
2A = 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^100
2A - A = ( 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^101 ) - ( 2 + 2^2 + 2^3 + 2^4 + ... + 2^100 )
1A = 2^100 - 1 chia hết cho 5
Cho A=2+2^2+2^3+2^4+...............+2^100.Chứng minh A chia hết cho 5
tớ làm giống Kirito :
A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^100.
2A = 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^100
2A - A = ( 2^1 + 2^2 + 2^3 + 2^4 + ... + 2^101 ) - ( 2 + 2^2 + 2^3 + 2^4 + ... + 2^100 )
1A = 2^100 - 1 chia hết cho 5
nhé !
Chứng tỏ A = 2 + 2^2 + 2^3 + 2^4 ................+ 2^60 chia hết cho 3
Em còn nhiều dạng thế này nhưng chưa biết làm ! MẤy anh chị làm bài này giúp em rồi cho em công thức với ạ ! Cách lớp 6.
A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3
=>A chia hết cho 3
A = 2 + 22 + 23 + 24 + ... + 260
=> A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 259 + 260 )
=> A = 2( 1 + 2 ) + 22(1 + 2 ) + ... + 259( 1 + 2 )
=> A = 2 . 3 + 22 . 3 + ... + 259 . 3
=> A = ( 2 + 22 + 259 ) . 3 chia hết cho 3
Vậy A chia hết cho A
A= 3+ 3^2+3^3+3^4+......+3^100
a,rút gọn A
b,chứng tỏ Achia hết cho 40
a, \(A=3+3^2+3^3+3^4+...+3^{100}\)
\(3A=3^2+3^3+3^4+3^5+...+3^{101}\)
\(2A=3^{101}-3\)
\(A=\frac{3^{101}-3}{2}\)
b, \(A=3+3^2+3^3+3^4+...+3^{100}\)
\(A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(A=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{97}\left(1+3+3^2+3^3\right)\)
\(A=40\left(3+3^5+...+3^{97}\right)⋮40\)
a, Tổng trên có 100 số hạng
Mỗi nhóm có 4số vậy có 25 nhóm
A =(3+3^2+3^3+3^4)+......+(3^97+3^98+3^99+3^100)
A=3.(1+3+9+27)+........+3^97.(1+3+9+27)
A=3.40+.....+3^97.40
A=40.(3+.....+3^97)
b, Vì 40chia hết cho 40 nên 40.(3+....+3^97) chia hết cho 40
Giải luôn bài này hộ mik nhé , cảm ơn mn nhiều lắm :
Chứng tỏ A chia hết cho 6 với A = 2 + 2 2 + 2 3 + 2 4 + …. + 2 100 . Mấy cái số mik cách là số nguyên tố nhé
\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(\Rightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(\Rightarrow A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(\Rightarrow A=\left(2+2^2\right)\left(1+2^2+...+2^{98}\right)\)
\(\Rightarrow A=6\left(1+2^2+...+2^{98}\right)⋮6\)
Bài 1:Chứng minh rằng :
a) 10^28+8 chia hết cho 72
b)8^8+2^20 chia hết cho17
Bài 2 :Cho :
a)A = 2+2^2+2^3+.........+2^60
chứng minh rằng Achia hết cho 3; 7; 15
a)$10^{28}$1028 chia 9 dư 1
8 chia 9 dư 8
1 + 8 = 9 chia hết cho 9
$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 9 (1)
$10^{28}$1028 chia hết cho 8 (vì có 3 chữ số tận cùng là 000 chia hết cho 8)
8 chia hết cho 8
$\Rightarrow$⇒$10^{28}+8$1028+8 chia hết cho 8 (2)
Từ (1) và (2) kết hợp với ƯCLN (8,9) = 1 . Suy ra $10^{28}+8$1028+8 chia hết cho 72
b)$8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}\times\left(2^4+1\right)=2^{20}\times17$88+220=(23)8+220=224+220=220×(24+1)=220×17 chia hết cho 17