Tìm số nguyên dương n, số nguyên tố p thỏa mãn:
p =\(\frac{n\left(n+1\right)}{2}\)= 1
Tìm các số nguyên dương n lẻ sao cho n-1 là số nguyên dương nhỏ nhất trong các số nguyên dương k thỏa mãn \(\frac{k\left(k+1\right)}{2}\)chia hết cho n
Tìm tất cả các số nguyên tố p q ,và số nguyên dương n thỏa mãn:
\(p\left(p+3\right)+q\left(q+3\right)=n\left(n+3\right)\)
cho P = \(\frac{n\left(n+1\right)}{2}-1\) tìm các số nguyên dương n để P là sô nguyên tố
p=(n-1)(n+2)/2
=> (n-1)(n+2) chia hết cho 2. mà 2 nguyên tố =>(n-1) hoặc (n+2) chia hết cho 2.
giả sử (n-1) chia hết cho 2. đặt n-1 =2k
=> n+2 = 2k +3.
=>p= 2k(2k+3)/2 = k(2k+3)
vì k nguyên mà p là số nguyên tố
=>k=1 và 2k+3=p
=>p=5 => n=3
Biết phàn nguyên của 1 số x, kí hiệu [x] là số nguyên lớn nhất không vượt quá x
CMR với mọi số nguyên dương n ta có \(\left[\frac{n}{2}\right]+\left[\frac{n+1}{2}\right]=n\)
Áp dụng Tìm các số nguyên dương n để n2 + 11n + \(\left[\frac{n}{2}\right]+\left[\frac{n+1}{2}\right]\)là số chính phương
Biết phàn nguyên của 1 số x, kí hiệu [x] là số nguyên lớn nhất không vượt quá x
CMR với mọi số nguyên dương n ta có \(\left[\frac{n}{2}\right]+\left[\frac{n+1}{2}\right]=n\)
Áp dụng Tìm các số nguyên dương n để n2 + 11n + \(\left[\frac{n}{2}\right]+\left[\frac{n+1}{2}\right]\)là số chính phương
Em Xét 2 trường hợp: n = 2k và n = 2k + 1
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
a, CMR nếu n là số nguyên dương thì \(2\left(1^{2013}+2^{2013}+...+n^{2013}\right)\) chia hết cho \(n\left(n+1\right)\)
b, Tìm tất cả các số nguyên tố p,q tm đk \(p^2-2q^2=1\)
A) Vì 2013 là số lẻ nên (\(1^{2013}+2^{2013}\)+....\(n^{2013}\)): (1+2+...+n)
Hay( \(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)) :\(\dfrac{n\left(n+1\right)}{2}\)
=>2(\(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)):n(n+1)(đpcm)
B)
Do 1 lẻ , \(2q^2\) chẵn nên p lẻ
p2−1⇔\(2q^2\)(p−1)(p+1)=\(2q^2\)
p lẻ nên p−1 và p+1đều chẵn ⇒(p−1)(p+1)⋮4
⇒\(q^2\):2 =>q:2 =>q=2
⇒\(q^2\)=2.2\(^2\)+1=9=>q=3
Chắc đúng vì hôm trước cô mik giải thik va, Vì 2013 là số lẻ nên (\(^{1^{2013}+2^{2013}+...n^{2013}}\))⋮(1+2+...+n)
=>\(\left(1^{2013}+2^{2013}+...+n^{2013}\right)\)⋮\(\dfrac{n\left(n+1\right)}{2}\)
=>\(2\left(1^{2013}+2^{2013}+...+n^{2003}\right)\)⋮n(n+1)
đpcm
Tìm số nguyên dương n nhỏ nhất lớn hơn 1 thỏa mãn \(A=\frac{\left(n+1\right)\left(2n+1\right)}{6}\) là 1 số chính phương
TH1) Với n = 6k
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+1\right)\left(12k+1\right)\) không chia hết cho 6
=> Loại
TH2) Với n = 6k+1
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+2\right)\left(12k+3\right)⋮6\)
=> \(A=\frac{\left(6k+2\right)\left(12k+3\right)}{6}=\left(3k+1\right)\left(4k+1\right)\)là số chính phương
Lại có: ( 3k + 1 ; 4k + 1 ) = ( 3k + 1 ; k ) = ( 2k + 1 ; k ) = ( k + 1 ; k ) = ( k ; 1 ) = 1
=> 3k + 1 và 4k + 1 đồng thời là 2 số chính phương
+) Với k \(\equiv\)\(1,3,5,7\)(mod 8 ) => 4k + 1 không là số cp
+) Với k \(\equiv\)2; 4; 6 ( mod 8) => 3k + 1 không là số chính phương
=> k \(\equiv\)0 ( mod 8) => k = 8h
=> Tìm h bé nhất để 24h + 1 và 32h + 1 là số chính phương(1)
+) Với h \(\equiv\)\(3,4,6\)( mod7) => 24k + 1 không là số chính phương
+) Với h \(\equiv\)1 (mod 7 ) => 32h + 1 không là số cp
=> h \(\equiv\)0; 2; 5 (mod 7 )
=> h = 7m hoặc h = 7n + 2 hoặc h = 7t + 7 ( với m;n; t nguyên dương )
Nếu m = 1 => h = 7 => 24h + 1 = 169 và 32h + 1 = 225 là hai số chính phương và h nhỏ nhất
=> n = 6k + 1 và k = 8h = 56
=> n = 337
=> A = 38025 là số chính phương
TH3) Với n = 6k + 2
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+3\right)\left(12k+5\right)\)không chia hết cho 6
TH4) Với n = 6k + 3
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+4\right)\left(12k+7\right)\)không chia hết cho 6
TH5) Với n = 6k + 4
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+5\right)\left(12k+9\right)\)không chia hết cho 6
TH6) Với n = 6k + 5
ta có \(\left(n+1\right)\left(2n+1\right)=\left(6k+6\right)\left(12k+11\right)⋮6\)
=> \(A=\frac{\left(6k+6\right)\left(12k+11\right)}{6}=\left(k+1\right)\left(12k+11\right)\)
mà ( k + 1; 12k + 11 ) = 1
=> k + 1 và 12k + 11 là 2 số chính phương
tuy nhiên 12k + 11 chia 12 dư 11 mà 1 số chính phương chia 12 không dư 11
=> Trường hợp này loại
Vậy n = 337
Tìm số nguyên tố a sao cho \(\left(\frac{1}{b}\right)^2=\frac{9}{-9+225a}+\frac{\left(1+2+3+...+n\right)^2-\left(1^3+2^3+3^3+...+n^3\right)}{2500}\)và b cũng là số nguyên tố.