cmr a,b,c thuộc z thì a(b+c)-b(a+c)=b(a-c)-a(b-c)
Cho P = (a+b)(b+c)(c+a) - abc với a,b,c thuộc Z . Cmr nếu (a+c+b) chia hết cho 4 thì P chia hết cho 4
Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc
=(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc
=ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc
=(a+b+c)(ab+ac+bc)-2abc
thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4 (1)
Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4 (2)
Tù (1) và (2)=>P chia hết cho 4
cho a/b, c/d với a,b,c,d thuộc Z, b,d >0
CMR:
a , nếu a/b <c/d thì ad<bc
b,nếu a/b < c/d thì a/b < a+c/b+d<c/d
a,
b, a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d)
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d
Vì \(b,d>0\)nên \(bd>0\)
Ta có: \(\frac{a}{b}< \frac{c}{d}\)
\(\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)
\(\Leftrightarrow ad< bc\)vì \(bd>0\)
cho các số hữu tỉ x=a/b , y=c/d , z=a+c/b+d ( a,b,c,d thuộc Z , b,d khác 0 ) CMR nếu x<y thì x<y<z
ĐỀ sai
a = 1 ; b = 4 ; c = 1 ; d = 2 ta có
\(\frac{1}{4}
CMR nếu a.c=b.c=(-1) và a,b,c thuộc Z ; c khác 0 thì a=b
bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ
Cho a, b, c thuộc Z. CMR: Nếu a < b và b < c thì a < c. (Tính chất bắc cầu của thứ tự)
Giả sử a/m =x, b/m= y. ( a,b, m thuộc z. m >0) và x <y. Cmr Nếu z= a + b/ 2.m thì x<z<y.
Làm theo tính chất a<b thì a + c <b + c
ta có: x<y
\(\Rightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow a< b\)
\(\Rightarrow a+a< b+a\)
\(\Rightarrow\frac{a+a}{2m}< \frac{a+b}{2m}\)
\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}\)
\(\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\Rightarrow x< z\) (1)
ta có: a<b ( cmt)
=> a + b < b+b
\(\Rightarrow\frac{a+b}{2m}< \frac{b+b}{2m}\)
\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}=\frac{b}{m}\Rightarrow z< y\) (2)
Từ (1);(2) => x<z<y
CMR: Nếu a,b,c thuộc Z thỏa mãn a^2 + b^2 = c^2 thì abc chia hết cho 3
Cho a , b , c thuộc Z . CMR : ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho 12