Tính tổng A=1.3+3.5+5.7+7.9+........+49.51
Tính B=\(\frac{1.3}{3.5}+\frac{2.4}{5.7}+\frac{3.5}{7.9}+.....+\frac{49.51}{99.101}\)
tính tổng :
p= 2/1.3+2/3.5+2.5.7+....................+ 2/49.51
q= 1/1.3+1/3.5+................................... +1/19.21
P = 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/49.51
P = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/49 - 1/51
P = 1 - 1/51
P = 50/51
Q = 1/1.3 + 1/3.5 + ... + 1/19.21
Q = 1/2 .(2/1.3 + 2/3.5 + ... + 2/19.21)
Q = 1/2.(1 - 1/3 + 1/3 - 1/5 + ... + 1/19 - 1/21)
Q = 1/2 . (1 - 1/21)
Q = 1/2. 20/21
Q = 10/21
Ủng hộ mk nha ^_-
\(P=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)
\(P=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(P=1-\frac{1}{51}\)
\(P=\frac{50}{51}\)
\(Q=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}\)
\(Q=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{19.21}\right)\)
\(Q=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(Q=\frac{1}{2}.\left(1-\frac{1}{21}\right)\)
\(Q=\frac{1}{2}.\frac{20}{21}\)
\(Q=\frac{10}{21}\)
\(P=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(=1-\frac{1}{51}\)
\(=\frac{50}{51}\)
\(Q=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{19.21}\)
\(2Q=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{19.21}\)
\(2Q=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\)
\(2Q=1-\frac{1}{21}\)
\(2Q=\frac{20}{21}\)
\(Q=\frac{20}{21}:2\)
\(Q=\frac{10}{21}\)
tính I=1^2+4^2+7^2+............+100^2
tính P=1.3^3+3.5^3+5.7^3+..........+49.51^3
Tính Q=1. 99^2+2.98^2+3.97^2+......+49.51^2
Tính tổng:
A= 2/1.3 +2/3.5 +2/5.7 +......+2/97.99
3/3.5+3/5.7+3/7.9+...+3/49.51 = ?
\(\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+....+\frac{3}{49.51}\)
= 3. \(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{49}-\frac{1}{51}\right)\)
=\(\frac{3}{2}\left(\frac{1}{3}-\frac{1}{51}\right)\)
=\(\frac{3}{2}.\frac{16}{51}\)
=\(\frac{8}{17}\)
đúng rồiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1.3+3.5+5.7+...+49.51
21176
Bạn tham khảo nhé ! ( Bạn chỉ việc đổi số thôi )
Ta có: A = 1.3 + 3.5 + 5.7 +…+ 97.99 + 99.101
A = 1.(1 + 2) + 3.(3 + 2) + 5.(5 + 2) + … + 97.(97 + 2) + 99.(99 + 2)
A = (12 + 32 + 52 + … + 972 + 992) + 2.(1 + 3 + 5 + … + 97 + 99).
Đặt B = 12 + 32 + 52 + … + 992
=> B = (12 + 22 + 32 + 42 + … + 1002) – 22.(12 + 22 + 32 + 42 + … + 502)
Tính dãy tổng quát C = 12 + 22 + 32 + … + n2
C = 1.(0 + 1) + 2.(1 + 1) + 3.(2 + 1) + … + n.[(n – 1) + 1]
C = [1.2 + 2.3 + … + (n – 1).n] + (1 + 2 + 3 + … + n)
C = = n.(n + 1).[(n – 1) : 3 + 1 : 2] = n.(n + 1).(2n + 1) : 6
Áp dụng vào B ta được:
B = 100.101.201 : 6 – 4.50.51.101 : 6 = 166650
=> A = 166650 + 2.(1 + 99).50 : 2
=> A = 166650 + 5000 = 172650.
Vậy A=172650
Ai muốn tham gia team thì kết bạn nhé , team tớ đang cần sự hỗ trợ từ các bạn ,STUDY WELL !
\(1\cdot3+3\cdot5+5\cdot7+...+49\cdot51=\frac{1}{2}\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{49\cdot51}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{50}\right)=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{50}\right)=\frac{1}{2}\cdot\frac{49}{50}\)
\(=\frac{49}{100}\)
Chúc bạn học tốt ^^!!!
A=1.3^3+3.5^3-5.7^3+...+49.51^3. Tính tổng A
1/3.5 + 1/5.7 + 1/7.9+.......+1/49.51
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{49.51}\)
=\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{49.51}\right)\)
=\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{49}-\frac{1}{51}\right)\)
=\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{51}\right)\)
=\(\frac{1}{2}.\frac{16}{51}\)
=\(\frac{8}{51}\)
3/1.3 + 3/3.5 + 3/5.7 +...+ 3/49.51
\(\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(=\frac{2}{3}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{2}{3}.\left(1-\frac{1}{51}\right)\)
\(=\frac{2}{3}.\frac{50}{51}=\frac{20}{51}\)
Ủng hộ mk nha !!! ^_^
25/17 mới đúng
3/1.3 + 3/3.5 + 3/5.7 + ... +3/49.51
3/1.3 + 3/3.5 + 3/5.7 + ....... + 3/49.51
= 3 x ( 1/1.3 + 1/3.5 + 1/5.7 + .... + 1/49.51 )
= 3 x ( 1 - 1/51 )
= 3 x 50/51
= 150/151
\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)
\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)
\(A=\frac{3}{2}.\frac{50}{51}=\frac{25}{17}\)